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ABSTRACT
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Uncertainty in air traffic arrival demand creates difficulties for the Air Traf-

fic Control (ATC) specialists in effectively planning Ground Delay Programs

(GDPs). An inefficiently planned GDP leads to excessive flight delays and under-

utilization of the GDP airport. GDP optimization models that exist today may

not generate the best strategies for planning GDPs, as, they consider demand

as deterministic, when in reality, it is highly stochastic.

In this thesis, we identify Flight Cancellations, Pop-up Flight Arrivals, and

Flight Drift, as the common sources of demand uncertainties. Two models - an

optimization model and a simulation model - that generate effective planning



strategies for a stochastic demand and deterministic capacity scenario, are de-

veloped. These models incorporate uncertainty in demand by associating prob-

abilities to the stochastic demand elements during GDPs.

The results from both the models suggest that setting Planned Airport Ar-

rival Rates (PAARs) - the number of flights that are ordered to arrive in a

time period at a GDP airport - that exhibit “staircase” pattern can effectively

mitigate the detrimental effects of demand uncertainties during GDPs. This

is a significant finding as it opposes the current policy of setting “flat” PAAR

patterns by the ATC specialists.
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Chapter 1

Introduction

1.1 Air Traffic Flow Management (ATFM)

Congestion remains air transport’s biggest long-term challenge. It causes wide-

spread system delays resulting in severe inconvenience to the passengers, high

revenue losses to the airlines, and heavy workload on the Air Traffic specialists.

In 1998 alone, the average delay among all U.S. carrier departures, attributable

to Air Traffic Control, was 7.9 minutes per flight. With more than 8 million

departures by the major and national US carriers during that year, this produced

a total delay of over 1 million hours! The economic losses to airlines and their

passengers that year stood at a staggering sum of US$4.5 billion.

High air transport growth combined with non-commensurate developments

in airport and air traffic control infrastructure has led to constraints on the

whole air transport system. Over the years, air traffic in United States grew

more rapidly than the capacity could accommodate; thereby causing congestion

at nation’s busiest airports. The domestic passenger traffic segment in the U.S.

alone is expected to grow at a rate of 2.5 % over the next two years taking the
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number of domestic passengers close to the 700 million mark by 2010. Serious

congestion related situations could arise if capacity isn’t enhanced to meet this

anticipated demand.

Further, the hub and spoke system of flight operations adopted by the airlines

aggravates the problem due to congestion. In this system, an airlines schedules

a large number of its flights to arrive and depart from its hub airport in order

that passengers might make convenient connections inbound flights to outbound

flights. These spurts of activities result in uneven traffic distributions at the hub

airports thereby taxing their resources. For example, the largest hub, Delta’s at

Atlanta, has over 600 daily jet departures, where banks of up to 60 arriving and

departing flights are operated 11 times a day.

To alleviate congestion problems, three different approaches - long-term,

medium-term and short-term - based on time span were proposed by Odoni [16].

In the long-term (5-10 years), the capacity-demand balance could be achieved

by augmenting the infrastructure by constructing new airports and runways, by

using larger aircraft, and by employing more efficient Air Traffic Control (ATC)

technologies. In the medium-term (6 months to 2 years), the approach would

be to alter the temporal flow of aircraft flow in the network; for example, by

imposing time-varying landing fees and user charges at airports or by auctioning

the available time slots in peak times. In the short-term (daily basis and with a

planning horizon of at most 6-12 hours), the approach would be to address the

Air Traffic Flow Management (ATFM) Problem or simply, Flow Management

Problem (FMP) i.e to optimize operations such that a best match of demand and

available capacity over the time horizon of consideration can be made. There

are two types of actions - tactical and strategic - that could be taken to address
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the FMP. The most common strategic action is to issue ground holds to the

flights before their departures so that costly airborne delay could be reduced in

exchange with less-expensive ground delay.

Traditionally, the Federal Aviation Administration (FAA) was the sole au-

thority making decisions related to ATFM. Most often, these decisions were

solely aimed at improving the operational performance (throughput and uti-

lization) of the National Airspace System (NAS) and neglected the economic

performance of NAS users, namely airlines and general aviation. As it is, the

NAS is difficult to coordinate given its size and complexity. As of today, it

consists of more than 20 Air Route Traffic Control Centers (ARTCC), approx-

imately 700 airspace sectors, 18,292 public and private airports, 171 Terminal

Radar Approach Control Facilities and a vast amount of aircraft and airport

related equipment in the contiguous United States. The airlines position was

that the FAA neglected the economics of airlines in the decision-making process.

This view, shared by most airlines, aroused distrust among the FAA and its users

(airlines) for much of the 1970’s. However, in the late 1980’s, things improved

as the airlines and the FAA started collaborating for mutual benefit. Over the

years, this collaboration lead to the establishment of a Collaborative Decision

Making (CDM) body that could bring together the FAA and all the participants

of the NAS into a common decision-making environment. Since its inception in

1995, CDM efforts have resulted in successful development of many efficient and

technologically advanced tools and procedures that could balance the needs of

both, the system and its users. The enhanced Ground Delay Program (GDP) is

one of the prominent outcomes of this collaboration.

The GDP is a key tool in the area of ATFM and serves as a short-term
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strategic tool to address the FMP. The principal intent of a GDP is to bal-

ance arrival demand and capacity at airports by delaying flight departures at

origin airports so as to avoid serious capacity-demand imbalances (CDIs) that

could otherwise occur. CDIs most commonly occur when the airport capacity is

severely degraded due to bad weather, though there are variety of reasons like

communication equipment failure, runway incursions, airport maintenance etc

that cause a reduction in airport capacity. GDP demand consists of scheduled

arrivals in a given time period at an airport. GDP capacity refers to the max-

imum number of flight arrivals that an airport can manage safely in any given

time period. The capacity of any airport is primarily dependent on the runway

system capacity consisting of runways, exits from and to runways, and taxi-ways

associated with runways, airport ground space, airspace, airport design, and

the regional weather at the airport. But, in most of the cases, it’s the limited

capacity of runways that restrict the airport capacity.

The purpose of GDPs is then to replace the fuel-consuming costly and unsafe

airborne delay with less costly and safe ground delay. When the capacity at any

airport is reduced drastically, the FAA issues a revised set of departure times

called control times of departure (CTDs) for the flights bound to this affected

airport. Essentially, at the beginning of a GDP, landing slots are created at the

GDP airport for each of the incoming GDP flight. The landing slots are time-

based, meaning, each flight has to arrive at the airport and take its allotted slot

at its Control Time of Arrival (CTA), which is set by the GDP planners at the

beginning of the GDP. These CTAs are calculated to spread out aircraft arrival

times at the affected airport so that the demand is evened out over time and the

balance between demand and capacity is restored.
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However, one assumption the GDP planners make is that demand is deter-

ministic. Of course, demand isn’t deterministic, due to inherent uncertainties

associated with flight arrivals , cancellations and other such factors. In spite of

well planned ground delay, aircraft may still face some airborne holding at the

destination airport due to the variability in the arrival process. These unpre-

dictabilities could either result in an increase or a decrease in the initial projected

demand, for which the GDP was originally planned. If the demand that actually

materializes is more than the projected demand, the ground delay imposed on

aircraft wouldn’t be sufficient to prevent airborne delays. On the other hand, if

the actual demand turns out to be less than the projected demand, the ground

delay imposed on flight would be unnecessary and would lead to under-utilization

of the airport resources (slots) during the GDP. Hence, an effective GDP should

incorporate these demand uncertainties and should plan for them before the

GDP has actually started.

This thesis studies the effects of demand uncertainties on the performance of

ground delay programs. In planning ground delay for aircraft, one would expect

trade-offs among airborne holding, ground holding, and airport utilization. Bal-

ance among these three performance measures should be achieved so that the

overall costs are minimized. How demand uncertainties affect these costs is the

main topic of this study. Two models - a Stochastic Mixed Integer Optimization

Model (SMIO) and a Simulation Model- are developed. The SMIO model gener-

ates optimal strategies for planning the number of flight arrivals that are needed

to meet desired utilization at minimum expected airborne holding during each

time-period of GDP, given that uncertainties in demand exist. The Simulation

Model helps in validating the results from the SMIO model. Both the models,
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however, are used for performing the sensitivity analysis of different parameters

such as flight cancellations, flight pop-ups and flight drift (described later).

1.2 Motivation for Problem Studied

The performance of a GDP depends primarily on its inputs, namely capacity and

demand at the affected airport. Capacity is highly sensitive to weather and hence

is stochastic. Depending upon whether there is deterioration or improvement in

weather conditions, airport capacity either degrade or increase during a GDP.

Similarly, demand is also stochastic as it is affected by variety of factors such as

last-minute flight cancellations, flight drifts and arrival of unknown flights (pop-

ups) at the airport during the GDP. To predict the number of pop-up flights

or the flights that could drift during a GDP is challenging, as these events are

random in nature, and specific to an airport. For example, the number of pop-up

flights in San Francisco can range anywhere from 0 to 6 per hour.

The current approach of GDP planners regarding demand prediction is to

treat demand as deterministic. This means that to satisfy fully the airport

capacity (or Airport Acceptance Rate, AAR) of 30 flights in a given hour, a

Planned Arrival Rate (PAAR) of 30 is set. Here, we would like the readers to

clearly understand the distinction between AAR and PAAR. An AAR is the

number of flight arrivals that the airport can safely accommodate in a time

period. A PAAR, on the other hand, is the number of arrival slots that are

created by GDP planners at the airport in a time period. For deterministic

demand, PAAR is set equal to AAR for any time period of consideration in a

GDP.
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In some cases, however, GDP planners treat demand as stochastic, and give

some allowance with regard to the stochastic demand elements, namely, number

of cancellations, flight drifts and pop-up flights. For example, the number of

flight cancellations, number of pop-ups and number of flights drifting off into

later time periods could be approximated to 2, 2, and 3 per hour respectively.

In this case, to fully satisfy the airport capacity (AAR) of 30 flights per hour,

a PAAR - of 30 + 2 - 2 + 3 = 33 flights per hour, would be set. Clearly, this

approach is not accurate as these elements exhibit considerable variation from

their estimated means. And again there are no standard estimates available for

the GDP planners; meaning that the estimates of one planner could vary from the

estimates of another. Further all the GDPs might not be identical, warranting

special handling for each one. For example, see the graphs of PAAR vs Actual

Arrivals generated for the San Francisco Airport for first four hours of GDP in

Figure 1.1. It can be seen that decisions related to PAARs that are based solely

on experience without mathematical analysis, do not necessarily guarantee the

effectiveness of the decision-making process. For example, the actual traffic that

can materialize may be higher or lower than what is being planned.

The graphs clearly show that there is a gap between the PAAR and the Ac-

tual Flight Arrival Rates, as recorded by Flight Schedule Monitor(FSM). The

width of the gap shows the extent of unpredictability that is inherent in flight

arrival process during GDP. Unpredictabilities arise from uncertainties in flight

cancellations, arrival of pop-up flights and occurrence of flight drifts during a

GDP. In Figure 1.1, sometimes, the PAAR was high meaning the actual traffic

was less, in which case, the GDP airport was under-utilized. At other times,

the PAAR turned out to be low, indicating that the excess demand that ma-
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Figure 1.1: Graphs of PAAR vs Actual Arrivals at San Francisco Airport
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terialized could have resulted in costly airborne holding. Thus, there is always

a trade-off between airport utilization and airborne holding. Whether, a GDP

planner pursues an aggressive PAAR policy by setting higher PAARs or follows

a pessimistic policy by setting lower PAARs, the performance of a GDP is very

much dependant on his/her decision-making capability related to PAARs.

Clearly, there is a need for a tool, which in the presence of demand uncer-

tainties, could generate optimal strategies for planning a GDP. With an effective

tool, the gap between the PAAR and Actual Arrivals could be reduced indicating

that optimal balance between airborne holding and ground holding is achieved.

Considering that the magnitude of airline costs from delays run into millions of

dollars, this tool could bring potential savings for the airlines by enabling more

efficient planning of GDPs.
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1.3 Problem Description

In this section, we would state the formal definitions of the FMP and the generic

FMP (also known as the Ground Holding Policy Problem GHPP) and then follow

it up by defining our problem and its scope. Along the way, we would define and

describe the key assumptions that go into formulating the various problems.

An excellent description of the FMP is given by Odoni in [16]. The FMP,

when idealized as a network, has four essential components:

i. Airports, the sources and sinks of flows on the network.

ii. Airways, the arcs on which flows travel.

iii. Waypoints, the network’s nodes at which airways intersect, merge or di-

verge.

iv. Sectors, collections of waypoints and contiguous segments of airways.

In most cases, airports constitute the principal bottlenecks of the ATC net-

work. Hence, we can reasonably assume that the primary causes of congestion

are the capacity-demand imbalances (CDIs) that occur at the origin and des-

tination airports. Possible measures to restore capacity-demand balance on a

short-term basis could involve actions such as delaying departure times of air-

craft, imposing enroute speed control restrictions, traffic-metering, re-routing,

high altitude holding and aircraft diversions. Thus, formally stated, the FMP

is the short-term approach of designing a flow management system (collection

of airports, airways, waypoints and sectors) to minimize the ATC delay costs,

subject to operational constraints (physical and policy related).
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The Generic FMP, also known as the GHPP, is a special case of the FMP

when only strategic actions like assigning ground delays to aircrafts on an aggre-

gate level are taken. Most often, a GDP serves as the means for issuing ground

delays to the departing flights. Thus, the GHPP can be stated as developing

optimal strategies for minimizing the airborne and ground delay costs during

GDPs.

In this thesis, we tackle the GHPP under deterministic capacity and stochas-

tic demand conditions. Our focus would be to develop optimal PAARs for each

hour of a GDP that can minimize the expected airborne delays at the GDP

airport. Note that ground delays are incorporated in the PAARs - the higher

the PAARs, lower the ground delay, and vice-versa. Thus, formally our problem

can be stated as follows:

“Given that the demand D is stochastic, and the arrival capacity,

AAR, is deterministic at an airport Z under GDP conditions, develop

a model that can generate the optimal PAARs for each hour of the

GDP so as to minimize the total expected airborne holding for the

entire GDP duration T at a desired utilization level U for the airport

Z.”

In this thesis, we assume a simplified ATC network as shown in the follow-

ing figure. The problem that we attempt to solve involves a single destination

airport. Our focus is on the trade-offs between airborne holding and airport uti-

lization at the GDP airport - more airborne holding in each hour of the GDP is

necessary to satisfy higher airport utilization, and vice-versa. For the purposes

of this problem, we assume the following:

• The only capacitated element of the ATC network is the arrival airport;
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all other elements have unlimited capacity

• Travel times of aircraft between each origin and the destination airport Z

is deterministic and known before the planning of GDP

• Airborne delays can occur only due to congestion at the airport Z

• Demand is stochastic for the entire GDP duration [0,T], and the parameters

that characterize various stochastic elements are known in advance

• Capacity of airport Z is deterministic for entire GDP duration [0,T], and

is known in advance

Sources

O1

On-1

O1

On

Airspace
of Airport

Z

Airport Z
runway

Airport
Terminal

Gates

Arrival
Queue

Sink

Figure 1.2: Simplified ATC Network with Airport as Main Element.

The above assumptions simplify the actual system to some extent; however,

our model is still useful as it helps to generate good starting solutions (PAARs),

which can provide the GDP planners with valuable insight in planning GDPs.

12



Specially, in scenarios, where airport capacities are predicted to a reasonable

accuracy and where demands are highly stochastic, our model serves its purpose.

In concluding this section, we would like to add that the main purpose of our

work is to develop a decision-making tool that could help in effective planning

of GDP.

1.4 Literature Review

Many models for generating optimal strategies for minimizing ground and air-

borne delays during a GDP exist in the literature. Almost all of them consider de-

mand as deterministic, and capacity as either deterministic or stochastic. These

models can be divided into the following categories:

• Deterministic-Demand Deterministic-Capacity (DDDC)

• Deterministic-Demand Static, Stochastic-Capacity (DDSSC)

• Deterministic-Demand Dynamic, Stochastic-Capacity (DDDSC)

The DDDC models are particularly helpful when the capacity of an airport

can be predicted with reasonable accuracy. A formulation for this model was

given in Terrab [18]. The objective is to find optimal ground holding policy that

minimizes the total ground delay costs:

where,

N is the number of flights scheduled to land;

T is the number of time periods for which the GDP is planned;

Kj is the capacity of the airport in period j;
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DDDC formulation:

Min
∑N

i=1

∑P+1
j=Pi

CijXij

subject to:

∑P+1
j=Pi

Xij = 1 for all i ∈ 1, . . . , N

∑N
i=1 Xij ≤ Kj for all j ∈ 1, . . . , P

Xij ∈ {0, 1}

Figure 1.3: IP Formulation of the DDDC Problem

Xij is the decision variable; Xij = 1, if aircraft i is assigned to land in period

j, and Xij = 0 otherwise;

Cij is the cost incurred by aircraft i when assigned to land in period j;

Pi is the period of time during which aircraft i was originally scheduled to

land.

This model can be solved very quickly using minimum cost flow or linear

programming technology. The experimental results show significant savings in

total delay costs given that capacity is taken to be deterministic. Further, it is

shown that large savings could still be achieved even when different users are

treated equitably.

DDSSC models for a single-airport are discussed by Andreatta and R.Jacur in

[3]. In this paper, the authors propose an order of O(N2) dynamic programming

algorithm to generate optimal delay decision strategies for solving a single-period

static-stochastic case of GHPP. Airport capacity is taken as a discrete random

variable K which takes value 0, 1, . . . , n with probabilities p(0), p(1), . . . , p(n) for

the time-period of consideration. Another input, namely an optimal priority rule
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for flight landings, was derived by using the airborne delay costs of individual

flights as a priority measure.

Later, Terrab [18] developed models that consider multi-periods at a sin-

gle airport for DDDSC version. Here airport capacities are defined as discrete

random variables that are given a probabilistic forecast that can be thought of

as a number of scenarios, each scenario representing a particular instance of the

random capacity vector with an associated probability. To solve small stochastic

problems, a dynamic programming approach was used. For much larger prob-

lems, a greedy heuristic with some limited-look-ahead-capability was proposed.

However, the authors were unable to prove that the formulation would yield an

integer solution.

In 1993, Richetta and Odoni [17] used stochastic linear programming to solve

the single-airport version of DDSSC. The authors extended a static-stochastic

capacity model (DDSSC case) to obtain a dynamic-capacity model (DDDSC

case) by overcoming the limitations of the dynamic programming formulation of

Terrab. Here, the model considers Q alternative scenarios for airport capacities

during the time period of interest; each scenario, q, having a probability of

occurrence pq. The model concentrates on aggregate flight groups rather than

on individual flights as the GDP control mechanism for ground delays could be

easily handled.

In 1999, Hoffman, Ball, Rifkin and Odoni [7] developed a polynomially solv-

able integer programming model for the single-airport static stochastic GHPP

(DDSSC case). They improve on Richetta and Odoni’s formulation by includ-

ing fewer number of decision variables and exploit the network structure of the

problem to generate optimal integer solutions. Another contribution of the au-
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thors is that their model fits with the current paradigm and procedures of CDM.

During the GDP, the airport resources are divided into “slots”which are then

distributed among the various airlines in an equitable manner. The fairness ob-

jective is achieved when slots are assigned to airlines based on their scheduled

times of departures - the earliest slots are awarded to flights with earliest sched-

uled times (see section on CDM for more details). The model formulation is

shown below:

DDSSC formulation :

Min
∑T

t=1 cgGt +
∑Q

q=1

∑T
t=1 CapqWq,t

subject to:

At − Gt−1 + Gt = Dt for all t ∈ 1, . . . , T + 1

(G0 = GT+1 = 0)

−Wq,t−1 + Wq,t − At ≥ −Mq,t for all t ∈ 1, . . . , T + 1

for all q ∈ 1, . . . , Q

(Wq,0 = Wq,T+1 = 0)

At ∈ Z+,Wq,t ∈ Z+, Gt ∈ Z+

Figure 1.4: IP Formulation of the DDSSC Problem by Hoffman et al

Where:

At is the number of planes that should land in time period t,

Dt is the predicted demand(number of flights) for time period t at the airport,

Gt is the number of flights whose arrival times are adjusted from time period

t to time period t + 1 (or later) using ground delay

16



Wq,t is the number of flights held in the air from time period t to t+1(or later)

by an airborne delay under scenario q.

Mq,t is the arrival capacity (AAR) of the airport during time t, if scenario q is

realized;

pq is the probability of occurrence of the qth scenario during GDP;

cg is the cost of ground holding a single plane for one time period;

ca is the cost of one period of airborne delay for a single plane.

The inputs for the above model are Dt, cg, ca, Mq,t and pq. The decision

variables, At values, can be viewed as planned airport acceptance rates (PAARs)

in the sense that they represent the number of aircraft that should land in each

time interval based on the planned departure times.

In 2000, Inniss, in her thesis [14],derives the probabilistic capacity scenarios

for the San Francisco (SFO) airport during GDPs. These capacity scenarios

(termed as Arrival Capacity Distribution ACD) serve as the inputs for the above

DDSSC model developed by Hoffman et al. The ACDs are computed based on

historical San Francisco GDP data.

Our work, in this thesis, does not fall under any of the above mentioned

categories as the model assumes a stochastic demand. We believe our model

is the first attempt to model demand as a stochastic variable and therefore

represents a new category, Stochastic Demand Deterministic Capacity (SDDC).

Although there has been some study in the area of demand uncertainties namely

flight cancellations, pop-up flights and drift flights, by Metron , Inc., there has

been no significant modeling effort in that area. In the report on the rolling
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spike problem [12] conducted by Metron, the drift flights (specifically, flights that

depart later than their Control Times of Departures (CTDs)), and cancellations,

are identified as two of the main causes that affect the uncertainty in forecasted

demand for each hour of GDP. Another study [11] on pop-up traffic concludes

that pop-up frequencies for an airport are highly variable from one GDP to

another, and exhibit some seasonal and hourly trends, thus making them hard

to predict on a hourly-basis.

In concluding this section, we note that very little work has been done to

analyze the effects of demand uncertainties on GDPs. On a research level, no

prior work exists. Since our work is the first in this challenging area, we would

develop our thesis in a way that is meant to stimulate the reader’s interest in

this area and to motivate further research.

1.5 Organization of Thesis

In chapter 2, we describe the various classes of demand uncertainty in detail.

Also, we introduce the readers to the philosophy of CDM and its operation.

Specifically, the effects of CDM procedures on demand uncertainties are ana-

lyzed.

In chapter 3, we describe and develop the two models - SMIO and Simula-

tion Models - for the problem we defined earlier. First, a non-linear formulation

is developed for the SMIO model, then a linear formulation is developed. The

Simulation Model is developed along the same lines assuming appropriate dis-

tributions for the occurrence of various uncertain elements. Towards the end of

this chapter, a brief description of the data sources and probability distributions
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used for modeling purposes is given.

In chapter 4, we test the models under different scenarios and record the re-

sults. The SMIO model directly gives the optimal PAARs for any given scenario,

while the Simulation Model requires the use of Pareto Optimality to select the

optimal PAARs out of a number of different scenarios. Both the models are

tested for marginal sensitivities of various demand elements on overall costs.

In chapter 5, we summarize the main contributions of this thesis. We also

suggest some recommendations for policy changes in GDP planning based on

our work. Finally, we provide some insights for future research in this area.
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Chapter 2

Demand Uncertainty

2.1 Description of demand uncertainty

Elements or events that cannot be predicted with certainty, due to lack of com-

plete information, are termed as uncertainties. Real-world systems almost always

deal with uncertainties. Uncertainties in system processes lead to variability of

the system responses to the environment, thereby degrading the system perfor-

mance. Difficulties in planning and decision-making could arise in an unpre-

dictable system. Usually uncertainties are proportional to the complexity of the

system. For example, the Air Traffic Control (ATC) system, which is incredibly

complex in size and scope, experiences innumerable uncertainties at different

stages of planning and execution. When flight operations are being planned,

uncertainties related to departures and arrivals of flights arise. Departures could

be affected by variation in taxi-out times, which in turn are affected by miles-

in-trail (MIT) restrictions and the inability to integrate into the overhead traffic

stream. Arrival processes are affected by enroute times, and taxi-in times. Un-

predictable block times - the time it takes an aircraft to travel from departure
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gate to arrival gate - affect the workload of pilots and hence, affect the planning

of crew movements.

In the decision-making process, the ATC managers use information that is not

up-to-date and often inaccurate causing difficulties for the airlines. In addition,

the manner in which traffic problems are first tackled within a small local entity

like an airport or a sector and then escalated to include a larger geographic area,

result in inefficiencies in the decision making process. Here, each local entity

optimizes its own objective function and hence, the collective performance seen

for a wider region suffers. For example, in case of a GDP, inbound traffic to

the afflicted airport is slowed down to reduce anticipated airborne holding. But,

this action could propagate backwards over the network and could slow down

overhead traffic flow that is far off from the local entity under consideration.

The best way to reduce uncertainty is to allow a better transfer of informa-

tion among all the entities within the ATC framework. Specially, when limited

resources are under contention, and choices regarding delay are required, eco-

nomic insight can only come from the airlines. Hence the FAA should facilitate

information exchange among airlines as well as various entities of ATC.

As described earlier, uncertainties are commonplace in the ATC system. Any

uncertainty that could be reduced, would translate into enormous cost savings

for the system, airlines and passengers. Therefore, in our work, we concentrate

on a small, but significant area - demand prediction and flight scheduling during

GDPs, where uncertainty is prevalent. Uncertainties in demand during GDP

arise from three main elements - flight cancellations, pop-up flights and flight

drift. These three elements have a combined effect of making the demand quite

difficult to predict. In the later part of this chapter, we describe each of these
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elements in detail and analyze their effects on system performance.

2.1.1 Flight Cancellations

Airlines usually cancel their flights when they experience non-availability prob-

lems related to crew, maintenance and security personnel, ATC problems like

runway breakdowns etc, and weather related problems that reduce the airport

capacity. Before cancelling a flight, the airlines would weigh the economics - fuel

costs saved for the cancelled flight versus cost incurred due to passenger delays

and loss of goodwill - and then make a decision whether to cancel a flight or not.

In most cases, decisions related to cancellations are affected by circumstances

outside the control of airlines (e.g. weather problems and reduction of airport

capacities). In some cases, airlines might face some operational problems and

have to cancel their flights. However, there are some circumstances under which

airlines cancel flights purely based on economics without any safety or other

ATC problems. But whatever the reasons, the airlines have the responsibility to

provide their updated flight plans to the ATC system so that airport resources

can be better used in lieu of the flight cancellations.

Under the CDM framework, all participating airlines send their updated

flight information through their Airline Operational Control centers(AOCs) to

the hub site of Volpe National Transportation Systems Center, a federal or-

ganization within the U.S. Department of Transportation (DOT). Flight infor-

mation from two other sources - NAS Monitoring Systems and Official Airline

Guide(OAG) - are also supplied to Volpe. Volpe now responds by processing all

the flight information and sending out CDM strings consisting of aggregate de-

mand lists(ADLs) to each of the CDM participants through the CDMnet. Data
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is managed through the Enhanced Traffic Management System (ETMS) and

Advanced Traffic Management System (ATMS) - ATMS has all the ETMS data

and functions along with some additional functions. This flow of information

within the ATC framework is shown in the figure 2.1.

NAS

Volpe Hub SiteOAG

AOC

ATCSCC

CDMnet

data

data

data

ADL

ADL

ADL

Figure 2.1: Information Flow Among Various Entities in ATC

The ADL file has approximately 61 data fields for every flight record, accord-

ing to the 1999 version. In an ADL file, each record contains a comprehensive

set of flight status information, including, arrival time, departure time and can-

cellation status of a single flight. Each flight record usually corresponds to a

unique flight; if, however, two or more records for a single flight exist, the most

recent record would give the accurate information about the flight. There are

seven cancellation (CNX) fields or messages associated with each flight record:

• SI - Substitution Induced Cancellation
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• FX - CDM airline cancellation

• RZ - NAS cancellation

• RS - OAG cancellation

• TO - timed out cancellation

• DV - diversion of destination type cancellation

• ID - the call sign of the flight has been changed causing cancellation

SI cancellations occur if the airlines choose to substitute that particular flight

with another one. This often happens during GDPs - two smaller flights could

be cancelled and one large flight could be substituted in their place. The FX

message is the CDM message used by any CDM participant airline cancelling a

flight. The RZ message is sent by airlines to indicate the cancellation of NAS

flight plan for that particular flight. The RS message is an internal ETMS mes-

sage generated when the ATC specialist takes an Official Airline Guide (OAG)

flight out of the database.

The TO message indicates whether the flight is cancelled and timed out by

the database. Flights are timed out when no activation message has been re-

ceived within a certain time of predicted departure time. If the NAS or CDM

messages have been received for a flight, then flight will be timed out one hour

beyond its estimated departure time. In case only OAG data has been received

for a flight, time out would be five minutes past OAG departure time. The DV

message is given based on either NAS flight plan or CDM message, indicating

that the flight would divert to an alternate destination. Finally, an ID cancel-

lation occurs when the airlines change the flight identifying number (ID) of a
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flight.

For effective planning of a GDP, the timeliness of cancellation notices is

crucial. If the cancellation notices are given well in advance, the ATC specialists

will have sufficient time to get an accurate demand profile and can plan the GDP

accordingly. But, on the other hand, tardiness in cancellation notices can distort

the demand profile and disrupt the arrival sequence thereby causing wastage of

slots allotted to these cancelled flights at the beginning of the GDP. The TO

cancellation usually results in slots being wasted as the specialists, unaware

that the flights are being cancelled, cannot risk substituting other flights into

their slots. With the other type of cancellations, the system is usually able to

dynamically adjust and effectively use the slot.

Clearly, SI, FX, RZ, RS, DV, and ID type of cancellations are not of a major

concern as far as airport utilization is concerned. So, in this thesis, when we talk

cancellations we mean TO cancellations as we are more interested in last-minute

cancellations that could create holes in the arrival sequence that can’t be filled

(see Figure 2.2). To fill the vacant slots that appear due to flight cancellations,
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SourcesDestination Cancelled
flight

Figure 2.2: Cancellations in the Flight Arrival Stream

the ATC specialists can plan for more flight arrivals than the airport capacity

can handle. The trade-off here is that if the buffer size of the flights turns out

to be more than the number of vacant slots, then the additional flights undergo

airborne holding. Estimating the possible number of vacant slots during GDP is

difficult due to the variability in the cancellations. For example, on a single day

(see Figure 2.3) that we analyzed, we found that the number of cancellations-

induced vacant slots varied from 0 to 5 during the entire duration of the GDP.
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TO cancellations-induced vacant slots :  01/19/99 at SFO
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Figure 2.3: Graph of TO Cancellation-Induced Vacant Slots

In the worst cases, there could be at least 10% loss of slots. Also, the number

of cancellation-induced vacant slots could be airport- and airline-specific, and

season-dependent too. Hence, cancellations are to be incorporated in the GDP

plans for a better airport utilization.

2.1.2 Pop-up Flights

Pop-up flights are defined as the unexpected flights that arrive during the Ground

Delay Programs (see Figure 2.4 ). Pop-ups mainly consist of corporate jets,

air-taxis, military aircraft, and last-minute flights created by airlines to accom-
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modate overbooked passengers. Currently there are two definitions of pop-ups.

They are

Any flight that arrived during a GDP without schedule information

in the ADL is defined as a Pop-up flight.

Any flight that arrived during a GDP and that first appeared in the

ADL after the GDP model time.

SourcesDestination

Figure 2.4: Pop-up Flights During GDP.

The schedule information of any flight is its information published in the

Official Airline Guide (OAG). The GDP model time can be stated as the time

when the GDP planners make their decisions about various GDP parameters,

with the information available at that time.

By first definition of pop-up, it is possible that a flight that is known to the

GDP planners before the model time, but which has no OAG information, might

be treated as a pop-up. Clearly, this flight is not unexpected, at least, at the
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time of planning for the GDP. By second definition, however, this flight is not

considered as a pop-up. Since information related to this flight is made available

to the GDP planners, it is no longer an unexpected flight, as the GDP planners

can take this flight into account and plan suitable actions.

Of course, there are always some flights that are unknown to the system until

the last minute of their arrival at the airport. Such flights are definitely covered

within the scope of the first definition. But, the second definition seems to

incorporate such flights in addition to flights which are known to the system but

have no OAG times. To illustrate what is called a pop-up flight, we use a simple

example. Suppose that the GDP model time is 1500z hours and that the GDP

starts at 1800z hours. Now, any flight that appears in the ADL after 1500z hours

is treated as a pop-up according to second definition. This is because, when the

GDP is planned, these flights were not known to the GDP planner and hence, not

planned for. Also, by second definition, as stated earlier, it is possible that flights

with no information in the OAG could still be not treated as pop-ups if they first

appear in the system before the GDP model time. Thus, the second definition

seems to differ from the first one in that all flights not known to the system

at some vantage point of time are pop-ups. We should note that since GDPs

are dynamically adjusted, e.g. through the compression and revision functions,

it is possible that even the second definition doesn’t capture the problem with

complete accuracy.

Until now, there have been only two systematic studies [11] of pop-up traffic,

both completed by Metron Aviation Inc. The first study was conducted in July

2000 and presented in the CDM meeting. This study made use of the first

definition of pop-ups. The major conclusions of the July 2000 study were as
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follows.

• Pop-ups are more prevalent during GDPs than during non-GDPs (normal

days).

• Pop-up flights are more likely to be cancelled than non pop-up flights.

• General Aviation flights were only 3% of all flights, but 30% of all pop-ups.

The first two results combined together reflect the dynamics of pop-ups dur-

ing the GDPs. The last result indicates that the General Aviation (GA) category

form a large portion of pop-up flights. Usually, most of the pop-ups are GA or

military or sometimes last-minute creations of one of the airlines. If these flights

are not planned for, they can seriously disrupt the equitable distribution of air-

port resources (slots) and also displace the sequence of the scheduled traffic.

According to currently existing policies, the airport is supposed to provide land-

ing slots for the pop-up flights as and when they arrive. If this is so, some of

the allotted slots to airlines during the beginning of the GDP could be taken

away from them and reassigned to pop-up flights, which is unfair. The other

effect of pop-ups is to displace the sequence of aircraft which could, in general,

lower airport utilization as there are certain factors like ground separation, MIT

restrictions and other such separation rules that apply while the flights takeoff

or land at the airports.

The second study was conducted in the summer of 2001 by Metron Inc [11].

This study was more extensive than the earlier one as it covers nine airports for

a period of two years. It is to be noted that for this study pop-up was defined

according to second definition. The pop-ups were classified into numerous cat-

egories based on airlines, aircraft sizes, CDM member status and many more.
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Thus, this study gives more valuable insight into the pop-up phenomenon. Some

of the important results of this study are as shown below:

• On an average for all airports, 7.0% of GDP arrivals were pop-ups.

• The air carriers account for 46% of pop-ups. However, since 79% of the

GDP arrivals belong to air carriers, the air carriers produce less than their

”fair share” of pop-ups.

• General aviation flights make up the second largest user type in pop-ups:

35%, and yet only 4% of the GDP arrivals. This over-representation is to

be somewhat expected, since all general aviation flights during a GDP are

pop-ups.

The 7.0 % figure for pop-up flights during a GDP is considered quite high by

the community and demonstrates the need to control the pop-up phenomenon

during GDPs. The second result shows that GA flights are 35% of all pop-ups

indicating that any action to control pop-ups should start with control of GA

flights.

Presently, the Flight Schedule Monitor (FSM), the CDM decision-support

tool, allows the traffic specialist to compensate for pop-up flights by setting a

“GA” factor when the GDP is planned. This means that a certain number of

slots are set aside for pop-ups, while the remaining slots are included in the

GDP planning for allocation to regular flights. The GA factor depends on the

expected pop-up rate per hour at the airport. For example, if it were known that

the average pop-up rate at SFO is 3 per hour when the capacity of the airport

(slots) is 30 per hour, the GA factor would be set equal to 3 and the remaining

27 slots are allocated to regular flights in an equitable way. A shortcoming of
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this approach is the deterministic way of predicting the pop-up rate for a given

capacity scenario. Studies show that pop-up rates per hour are highly variable,

dependent on airport, seasons and airlines. In figure 2.5, it can be seen that

average pop-ups per hour could vary anywhere from 0 to 10. Thus, setting a

deterministic pop-up rate clearly has limited effectiveness.
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Figure 2.5: Average Pop-up Flights per Hour (Courtesy : Metron Inc.)

Finally, the effect of pop-up flights on the performance of GDP is significant,

both in magnitude and nature of impact. Equity and predictability of flight

arrivals are two issues that are directly affected by pop-ups.
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2.1.3 Flight Drift

Flights are given Control Times of Arrivals(CTAs) and Control Times of Depar-

ture (CTDs) during GDPs. Essentially, each flight has to takeoff at a particular

time and arrive at a particular time to take its assigned slot at the destination

airport. Now, there are always some flights that drift with time and land in

either earlier or later arrival slots than their actual slots. This phenomenon is

called Flight Drift.

Flight Drift result from CTA non-compliance of flights, meaning, flights are

not arriving at the appointed slot time. CTA non-compliance could occur in two

cases:

• CTD non-compliance, where ARTD �= CTD

• CTD compliance (i.e. ARTD = CTD) but AETE �= OETE

In first case, the actual runway time of departure (ARTD) of flights could

be either sooner or later than their CTDs. This drift is termed Ground Drift.

Therefore,

Ground Drift = ARTD − CTD

In the figure 2.6, the flight with CTD of 1715z hours could depart either before

1715z hours (at 1645z, 1700z etc hours) or after 1715z hours (at 1730z, 1745z

etc hours) resulting in ground drift.

In most of the cases, the ground drift of flights is unrecoverable. The only

way to recover ground drift is to increase air speed. However, this is not common

due to various enroute restrictions like MIT restrictions, Sector loads etc.

In the second case, even assuming that flights depart at their CTDs, they

incur some drift in air before they arrive at the destination airport. This drift
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1730z CTD=1715z 1700z 1645z

Figure 2.6: Ground Drift Due to CTD Non-compliance

results when Actual Enroute Time(AETE) is either more or less than OETE.

This is termed as Enroute Drift. Hence,

Enroute Drift = AETE − OETE

The most common reason for enroute drift can be attributed to variability in

overhead air traffic. If a flight arrives later than its CTA, it is termed Forward

Drift; alternatively, if the flight arrives before its CTA, it is termed Backward

Drift. In Figure 2.7, the flight with CTD=1700z and CTA=1915Z hours could

incur enroute drift and end up taking an arrival slot either before its CTA (at

1900 z hours or before) or after its CTA (at 1930z hours or beyond).

Thus, each flight has a ground drift and an enroute drift. Hence, the net

drift for each flight could be given as:

Net Drift = Ground Drift + Enroute Drift

Drift during GDPs can lead to delays, unpredictable flows in air traffic and

under-utilization of airports. In a study [10] by Metron, drift was identified
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CTD = 1700z1930z CTA = 1915z 1900z

Figure 2.7: Enroute Drift

as one of the main causes for under-delivery of airports during GDPs. In this

study, they analyzed GDPs at four different airports and found that drift was

very common during GDPs and had a significant impact on the performance

of an airport. Early drift in the first hour and late drift in the last hour leads

to reduced demand at the airports causing under-utilization. Drift that occurs

during middle hours have little impact as each hour loses and gains roughly the

same amount of flights; hence, there is little or no under-delivery for those hours.

The statistics for the number of flights that drifted (missed their CTAs) for the

selected GDP days at four different airports namely Atlanta (ATL), Chicago

O’Hare (ORD), Boston (BOS), and Philadelphia (PHL) airports are as shown

in Table 2.1.

Clearly, the statistics demonstrate that the forward drift is more common

than background drift. The worst case statistics belong to the Atlanta (ATL)

airport, wherein the number of flights that drifted, roughly, come to 3 per hour

of GDP. This is significant as each flight that drifts could potentially result in
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Table 2.1: Analysis of Drift on Sample GDP days (Courtesy: Metron Inc)

Airport GDP day Duration Backward Drift Forward Drift

ATL 06-05-00 1800-0059Z 4 18

ORD 08-10-00 1700-0259Z 3 15

BOS 05-26-00 2000-0259Z 2 3

PHL 05-13-00 1800-2359Z 2 1

an unused slot during that hour, or unwanted airborne holding in some other

hour.

Departure compliance of aircraft is the best way to reduce delays and to

increase predictability of arrivals. Currently, the departure compliance window

during GDP is [-5, +15] meaning a flight could depart no earlier than 5 minutes

and no later than 15 minutes. However, this window was considered too wide to

effectively mitigate the impact of drift. Recently, the FAA, on an experimental

basis, tested the effect of tightening the departure compliance window to [-5, +5]

minutes. It was found that flight drift was significantly low under reduced time

window.

2.2 CDM and Demand Uncertainties

2.2.1 CDM Philosophy

Collaborative Decision Making (CDM) is an effort to improve air traffic man-

agement through information exchange, procedural improvements, tool devel-

opment, and common situational awareness (see [21] and [4]). It serves as

an efficient approach in allocating the scarce resources such as airport runways,
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airport terminal gates, and air traffic flow management takeoff slots to all the

users of NAS in an equitable manner. Originally conceived within the Federal

Aviation Administration (FAA) - Airlines Data Exchange (FADE) project, it

proved that with real-time submission of airlines operational information to the

FAA, decisions that directly impact the NAS users and the Air Traffic system,

could be made better.

Before CDM, there was a notion among various NAS participants, specially

within the airline community, that the GDPs were excessively controlled, not

giving enough flexibility to the airlines. The FAA was seen as making economic

decisions for the airlines. For example, assume that FAA assigns two flights of a

particular airlines to slots A and B during GDP. Suppose that the first flight can

not make it to slot A or if, for some reason, the economic impact of the second

flight is more significant than the first flight, then the airline would ideally like

to re-assign slot A to the second flight and slot B to the first flight. Under

the stringent FAA policies at that time, this substitution might not be possible.

Thus, prior to CDM, the conditions were not conducive to co-operation and trust

between the system (FAA) and its users (airlines and others).

In 1993, the FADE experiment showed there could be large scale benefits

from incorporating dynamic schedule information from the airlines into decision

making. It is clear to see that the airline schedules are not static as published in

Official Airline Guide (OAG) but are dynamic owing to the weather and other

conditions. Hence, the decisions made by the FAA prior to CDM were based on

less accurate data. The FAA and the airlines were quick to realize the potential

benefits of CDM and came forward to promote this concept.

Today CDM has about 47 airlines as active participants along with the FAA
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and works towards developing tools and procedures that can benefit every user

of the system. In its eight years of implementation [5] and [6], CDM has

• established a communications infrastructure to supply both the FAA and

participating airlines with a common arrival demand picture at every major

airport in the United States.

• removed (unintentional) disincentives for the airlines to report up-to-date

flight status and intention information(e.g. During January through May,

flight cancellation notices received under CDM, on average, were at least

63 minutes earlier at SFO, than they would have been without CDM).

• developed a mechanism (the Compression algorithm) to perform dynamic,

inter-airline slot swapping that utilizes arrival slots vacated by cancelled

or delayed flights;

• provided traffic flow managers with the ability to revise program param-

eters during a GDP that are dependent upon stochastic conditions (e.g.,

airport acceptance rate);

• disseminated accurate aggregate forecasts of arrival demand at all major

airports in the US to all traffic flow managers and to all airline operational

control centers (AOCs)

• distributed to the Air Traffic Control System Control Center (ATCSCC)

and to all AOCs a uniform set of decision support software and airport

demand monitoring tools (the Flight Schedule Monitor) for formulating

and analyzing GDPs.
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In the study on pop-ups [11], it was found that CDM participants make up

78% of the GDP arrivals, but only 32% of the pop-ups, while non-CDM partic-

ipants make up 22% of the GDP arrivals, but 68% of the pop-ups. Therefore,

CDM participants are under-represented in the pop-up class while non-CDM

participants are dramatically over-represented. This result demonstrates that

CDM has had a definite impact on improving information quality.

In all, CDM helped in reducing the airborne delays of traffic by helping flow

of information among various NAS users. Before CDM, accurate information

was not made available to the ATC specialists leading to an inefficient use of

airport resources (slots). However, with the advent of CDM, the possibility of

slots going unutilized, reduced to a great extent due to the underlying incentives

and effectiveness of various CDM methodologies and tools for all NAS users.

2.2.2 Effects of Compression Algorithm on Demand Un-

certainties

Most often it happens that if airlines were cancelling flights without substituting

any of their flights in the vacant slot, the slot would go unused during the GDP.

A new mechanism called Compression was developed to adjust flights delays to

fill in the vacant slots “holes”.

The Compression Algorithm essentially is a dynamic tool designed to move

flights up in the arrival hierarchy during a GDP in order to fill slots vacated

by cancelled flights. The algorithm associates an owner (airlines) with each

arrival slot in the GDP duration. In the event that a slot is vacated due to a

flight cancellation, then compression seeks to move a feasible flight of the owning

airline as close as possible to that slot. If none of the flights of that airlines is

39



available to fill the empty slot, only then, a flight of another airlines(possibly

competitors) would be considered for slot allocation. Thus, Compression ensures

not only that the vacant slots are filled but also that equity is maintained while

filling the vacant slots. This way, an airline receives a benefit by trading in a

slot it cannot otherwise use. Other (competing) airlines also receive a benefit

(to the extent necessary to provide a usable slot to the airline that freed up the

original slot). This is viewed as a win-win situation for all.

A brief illustration of Compression is shown below. The Table 2.2 gives the

initial allocation of slots at the beginning of a GDP. Notice that the total delay

imposed on the flights is 69 minutes.

Table 2.2: Initial Slot Allocation to Flights During GDP

Airlines Flight-ID ETA(hh:mm) CTA(hh:mm) Delay(min)

Delta DAL1 9:45 10:00 15

United UAL1 9:57 10:05 08

American AAL1 10:03 10:10 07

Delta DAL2 10:09 10:15 06

USA USA1 10:13 10:20 07

American AAL2 10:14 10:25 11

United UAL2 10:15 10:30 15

Total Delay 69

Now assume that UAL1 is cancelled. This cancellation creates a vacancy

of a slot as shown in Table 2.3. Now suppose if no compression was applied,

meaning, the flights below UAL1 are not pushed up in the hierarchy, then the

total delay would be 61 minutes as shown in table 2.3 and also, a slot gets
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wasted. However, if some form of compression is used by just pushing up the

flights below UAL1, then the delay reduces to 36 minutes and no slot is wasted.

However, the delay incurred by the UAL2 flight is 10 minutes. In this case, no

explicit incentive is given to the United Airlines for relieving its slot; though,

system wise, the total delay achieved was minimum. This is shown in the table

2.4.

Table 2.3: Delay and Slots Assignment in Lieu of a Cancellation

Airlines Flight-ID ETA(hh:mm) CTA(hh:mm) Delay(min)

Delta DAL1 9:45 10:00 15

United UAL1 cancelled 10:05 -

American AAL1 10:03 10:10 07

Delta DAL2 10:09 10:15 06

USA USA1 10:13 10:20 07

American AAL2 10:14 10:25 11

United UAL2 10:15 10:30 15

Total Delay 61

Now, we apply compression with equity considerations, given that the flight

UAL1 is cancelled. Since UAL1 belongs to United Airlines, this particular air-

line should get some incentive for vacating the UAL1 slot. The Compression

algorithm provides some sort of bartering among the various airlines for the slot

exchanges in an equitable manner (refer [9] and [20] for more details). In this

particular instance, United Airlines exchanges its vacant slot with Delta Air-

lines, securing in return a convenient slot for its immediate flight beneath UAL1

- namely , slot 10:15 for UAL2. After the final exchange of slots, the flights are
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Table 2.4: Slots Assignment with Compression in Absence of Equity

Airlines Flight-ID ETA(hh:mm) CTA(hh:mm) Delay(min)

Delta DAL1 9:45 10:00 15

American AAL1 10:03 10:05 02

Delta DAL2 10:09 10:10 01

USA USA1 10:13 10:15 02

American AAL2 10:14 10:20 06

United UAL2 10:15 10:25 10

- - - 10:30 -

Total Delay 36

moved up in the hierarchy as shown in the table 2.5.

The total delay of 36 minutes is the same in both the cases of compression.

However, notice the delay of United Airlines. UAL2 flight reduced its delay from

15 minutes to 0 minutes. Thus, Compression with an element of equity is much

more reasonable and attractive for the airlines, as they get their incentives even

if they disclose their cancellations in time. As seen from the simple example, no

airline that is reporting its cancellation is losing to any other competing airlines.

In addition to equity and delay savings, timely notices of cancellations is also

one of the biggest benefits of Compression.

It was reported [9] that between January 20,1998 and July 15,1999, the per-

cent delay savings for EWR and SFO airports were 13.0% and 9.7% respectively

upon execution of compression algorithm. The savings mentioned here are the

assigned ground delay savings and do not necessarily reflect airborne holding

savings (or increase). In a different study [5] by National Center of Excel-
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Table 2.5: Revised Slots Assignment and Delays After Compression

Airlines Flight-ID ETA(hh:mm) CTA(hh:mm) Delay(min)

Delta DAL1 9:45 10:00 15

American AAL1 10:03 10:05 02

Delta DAL2 10:09 10:10 01

United UAL2 10:15 10:15 0

USA USA1 10:13 10:20 07

American AAL2 10:14 10:25 11

Total Delay 36

lence in Aviation Operations Research (NEXTOR), one-half of the compression

benefits are realized as destination delay savings, with the rest being offset by

airborne holding delays. One more benefit of compression is that FAA is now

able to deliver a constant smooth arrival rate at the airports. That is to say

compression has improved ‘predictability’ of arrival stream. As this thesis will

show, this will translate into savings in airborne delay.

2.2.3 Effects of RBS Algorithm on Demand Uncertainties

The purpose of the Ration-by-Schedule (RBS) algorithm [9] is to ration arrival

slots to the airlines according to the scheduled times of the flights, where “sched-

uled Time” are the published times in Official Airline Guide (OAG). We note

that since the allocation of slots is done based on arrival times that are created

long before the GDP is run, the allocation process is independent of any delay

information that the air carriers might submit.

To understand the significance of scheduled-times-based allocation, we should
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first look at the algorithm used prior to the existence of RBS. This algorithm is

called Grover Jack and the slot allotment was done on a first-come-first-serve ba-

sis [9]. That is to say flights were assigned slots based on their “Estimated Time

of Arrivals (ETAs)” rather than OAG times. There were two major objections

to using ETAs in slot allocations, namely

• Flights that are already delayed prior to slot allocation at the afflicted

airport, received an even greater delay as their ETAs are used for slot

allocation.This is known as a double-penalty.

• If a flight was cancelled just prior to allocation, no compensation was given

to the airline that released its slot. Moreover, the competing airline that

secured the slot benefitted at the expense of the “donor” airline.

The double penalty-issue can be explained based on the table below. Table

2.6 gives the initial slot ownership of airlines based on their OAG times. Now,

since the Grover-Jack algorithm looks at only the ETA for slot allocation, the re-

assigned slots are as in Table 2.7. The delay incurred by UAL1 flight is 7 minutes

(including initial delay of 2 minutes). Thus, flight UAL1 incurs a double penalty.

When the Grover-Jack was used for slot allocation, the airlines generally

objected to the two issues of double-penalty and non-compensation for forsaking

their slots. They argued that sending accurate information about their flights

might actually was detrimental to the position of the airline in question. Thus,

airlines refrained from providing up-to-date information on their flights to the

FAA as they found no incentive to do so. This proved to be a serious impediment

to the flow of information, especially, in times of bad weather, when the need

for the FAA to manage airspace efficiently was most critical.
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Table 2.6: Initial Slots Assignment Based on OAG Times

Airlines Flight-ID ETA(hh:mm) CTA(hh:mm)

Delta DAL1 10:01 10:00

United UAL1 10:08 10:05

American AAL1 10:04 10:10

Delta DAL2 10:07 10:15

United UAL2 10:20 10:20

American AAL2 10:25 10:25

Table 2.7: Slot Assignment Based on Grover-Jack

Airlines Flight-ID ETA(hh:mm) CTA(hh:mm) Delay (min)

Delta DAL1 10:01 10:00 00

American AAL1 10:04 10:05 01

Delta DAL2 10:07 10:10 03

United UAL1 10:08 10:15 07

United UAL2 10:20 10:20 00

American AAL2 10:25 10:25 00

Total Delay 11
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To remedy the drawbacks of the Grover Jack algorithm, the CDM working

group developed the RBS algorithm which removes the disincentives just dis-

cussed. The RBS algorithm is illustrated in Table 2.8. Clearly, United Airlines

retains the slot allotted to UAL1 prior to the beginning of program, no matter

what the ETA of UAL1 is. Further, United Airlines exchanges its UAL1 slot

with American Airlines AAL1 slot, thereby accruing only 2 minutes of delay for

UAL1 flight i.e. no additional delay on top of its initial delay.

Table 2.8: Slots Assignment Based on RBS

Airlines Flight-ID ETA(hh:mm) CTA(hh:mm) Delay (min)

Delta DAL1 10:01 10:00 00

American AAL1 10:04 10:05 01

United UAL1 10:08 10:10 02

Delta DAL2 10:07 10:15 08

United UAL2 10:20 10:20 00

American AAL2 10:25 10:25 00

Total Delay 11

In concluding this section, we note that the main benefits of RBS is that

airlines now can provide updated information with trust and knowledge that

their sharing of information does not hamper their business goals, but only

improves the performance of the system. Additionally, RBS provides airlines

with full control of their slots and the decision to trade them with other airlines

or to substitute their own flights, is left entirely to their discretion.
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Chapter 3

Modeling Demand Uncertainties

3.1 Stochastic Mixed-Integer Optimization (SMIO)

Model

In Chapter 2, we have seen how uncertainties in demand affect the performance of

GDP with respect to airport utilization and airborne delays. We have also stated

that better information exchange among various ATC entities would help reduce

the degree of demand uncertainty. However, uncertainty can only be reduced

but not eliminated altogether. Hence, the system should consider uncertainty as

a part of everyday process and respond in an effective manner to mitigate the

effects of uncertainty.

In this section, we discuss the two versions of the Stochastic Mixed-Integer

Optimization (SMIO) model that we developed to help the ATC specialists in

planning effective GDPs. To remind the readers of the formal statement of our

problem, we state it again:

“Given that the demand D is stochastic, and arrival capacity AAR

is deterministic at an airport Z under GDP conditions, develop a
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model that generates the optimal PAARs for each hour of GDP so as

to minimize the total expected airborne holding for the entire GDP

duration T at a desired utilization level U for the airport Z”

Both the versions of SMIO model generate optimal PAARs for every hour

of GDP in the presence of the uncertain demand elements. However, the SMIO

model incorporates only two types of uncertainty namely - uncertainty associated

with pop-up flights and cancellations. Drift could not be incorporated as the

structure of SMIO model was not amenable due to the presence of a Markovian

requirement, which is not satisfied by drift.

3.1.1 Model Description

The Stochastic Mixed-Integer Optimization (SMIO) Model is formulated as a 0-1

IP that consists of an objective function and five types of constraints (see [22] for

in-depth description of Mixed-Integer Programs). The objective function to be

minimized represents the expected size of the airborne queue at the airport for

the entire GDP duration. A set of 0-1 decision variables Xpaar(k,t) is specified

for each time period t. Time is discretized into one hour blocks.

Initially, we develop a non-linear formulation for this model, then follow it up

with a linear formulation that can be more easily solved. Essentially, our model

associates probabilities to each event - pop-ups and cancellations - to compute an

expected number of pop-ups and cancellations during the GDP. The formulation

and explanation of the model is elaborated in the next section.
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3.1.2 Non-Linear Formulation

Let t ∈ 1, . . . , T be a discrete set of continuous one hour time intervals spanning

the entire duration of a GDP at airport Z. Airport capacities (also known as

airport acceptance rates, AARs) are taken as deterministic for all time periods

t ∈ 1, . . . , T and are given at the start of the GDP. When the GDP specialists

plan for a GDP, they plan for a certain level of utilization depending upon

various criteria. Since, the airport resources are distributed into hypothetical

slots during the GDP, utilization could be measured as the ratio of the number

of utilized slots to the total available slots during the entire GDP. Let ε be the

target number of unutilized slots during the entire GDP. The total available

slots in any period is equal to the AAR in that period. Hence, utilization can

be calculated given ε, and AARs for each period of GDP.

The Planned Airport Arrival Rate (PAAR) is the number of flights that

are ordered to be sent to the airport Z when the GDP is issued. Now, we

assume MinPaar and MaxPaar as the upper and the lower bounds for PAARs

respectively. These bounds are restricted to a small but reasonable interval

around the AARs so that the solution search space could be manageable.

Finally, we take into account the airspace capacity of an airport. Every air-

port has its own limitation on the number of flights that can occupy an airborne

queue. The general reasons are related to safety and space requirements. To

capture the airspace capacity constraint in our model, we assume a maximum

allowable airborne queue size MaxQ[t] for every interval t of the GDP at the

airport Z.

The non-linear formulation has the following variables and coefficients:

• Xpaar(k, t) ∈ {0, 1}; Xpaar(k, t) = 1, if PAAR = k in time period t, and 0
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otherwise.

• Y (j, t) ∈ [0 , 1]; Y (j, t) is the probability that there are j flights in the

queue at the end of time period t.

• q(i, j, t) ∈ [0 , 1]; ; q(i, j, t) represents the transition probability that there

will be j flights in the airborne queue at the end of period t, given there

are i flights in the queue at the end of period t − 1.

• ve(i, t) ≥ 0; ve(i, t) is the expected number of unutilized slots in period t

given that there are i flights in airborne queue at the end of period t − 1

The objective function of the model, which minimizes the expected airborne

queue size, can be formulated as shown below:

Minimize
T∑

t=1

MaxQ[t]∑
j=0

j Y (j, t)

The various constraints of the model are explained below:

• For any time period t, PAAR can take only a single value in the interval

[MinPaar , MaxPaar]. For example, if the PAAR for time period t = 2 is set

at 27, then Xpaar(27, 2) = 1 and hence, we have Xpaar(k, 2) = 0 ∀ k �= 27

, and k ∈ [MinPaar , MaxPaar]. This constraint is formulated as shown

below:

MaxPaar∑
k=MinPaar

Xpaar(k, t) = 1 ∀ t ∈ 1, . . . , T + 1 (3.1)

• The airborne queue at the beginning of a GDP, i.e., in time period t = 0

would be zero. Hence, we have the constraints:
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Y (0, 0) = 1 (3.2)

Y (j, 0) = 0 ∀ j ∈ 1, . . . , MaxQ[0] (3.3)

• Let the airborne queue size at the end of time period t be j, queue size at

the end of time period t− 1 be i, the number of flight arrivals during time

period t be Narr[t] and finally, AAR[t] be the airport acceptance rate in

time period t. Then the following equality holds in our model setting:

j = i + Narr[t] − AAR[t]

This equality states that since Narr[t] and AAR[t] are independent and

random in nature, the airborne queues exhibit a Markovian Property [19].

This means the queue j in time period t is only dependent on the queue i

in time period t− 1. The queue probabilities are modeled as shown below:

Y (j, t) =

MaxQ[t−1]∑
i=0

q(i, j, t) Y (i, t − 1)

∀ j ∈ 0, . . . , MaxQ[t], t ∈ 1, . . . , T (3.4)

These transition probabilities are determined in the following way.

q(i, j, t) = Pr{(j, t) | (i, t − 1)}

We know that j = i + Narr[t] − AAR[t]. So, we can formulate q(i, j, t) as

follows:

if j = 0, then

q(i, j, t) =
MaxPaar∑

k=MinPaar

Pr{Narr[t] ≤ AAR[t] − i | Xpaar(k, t) = 1} Xpaar(k, t)
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else if, 1 ≤ j < MaxQ[t], then

q(i, j, t) =
MaxPaar∑

k=MinPaar

Pr{Narr[t] = j−i+AAR[t] | Xpaar(k, t) = 1} Xpaar(k, t)

else,

q(i, j, t) =
MaxPaar∑

k=MinPaar

Pr{Narr[t] ≥ j−i+AAR[t] | Xpaar(k, t) = 1} Xpaar(k, t)

The exact form of the transitional probabilities depend on the probability

distributions for cancellations and pop-up arrivals. Xpaar(k, t) is included

in the transitional probability because the number of flight arrivals is di-

rectly dependent on the PAAR. Note that the presence of Xpaar(k, t) vari-

able in the transitional probability gives non-linearity to constraint ( 3.4).

• We discussed earlier the notion of slots during a GDP and how airport

utilization could be measured. In the presence of random events, we can

model the utilization in terms of the expected number of utilized slots

during the GDP. This is shown in the constraint below:

T∑
t=1

MaxQ[t−1]∑
i=0

ve(i, t) Y (i, t − 1) ≤ ε (3.5)

We state that the expected number of unutilized slots during the entire

duration of GDP is not more than a certain number given by ε. ve(i, t)

can be computed as follows:

ve(i, t) =
MaxPaar∑

k=MinPaar

R∑
h=0

(R − h)Pr{(Narr[t] = h)|Xpaar(k, t) = 1}Xpaar(k, t)

∀ i ∈ 0, . . . , MaxQ[T − 1] and ∀ t ∈ 1, . . . , T

where, the variable R is given as R = AAR[t] − i.
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Constraints ( 3.2), ( 3.3), ( 3.4), and ( 3.5) along with the non-linear objec-

tive function formulated in the beginning of this section constitute non-linear

formulation.

The above optimization problem can be solved, but solving it efficiently for

large instances may be challenging. For the problem at hand, it is highly de-

sirable to find a linear formulation in order to take advantage of the significant

advances in mixed IP solvers.

3.1.3 Linear Formulation

Linear Formulation: Version 1

To generate a linear formulation from the non-linear formulation just described,

we introduce a new set of variables:

• Y (k, i, t) ∈ [0 , 1] ; Y (k, i, t) represents the probability that there are i

flights at the end of time period t−1 if the planned arrival rate in period t

is k, and equals 0 otherwise. In some way, Y (k, i, t) = Y (i, t−1)Xpaar(k, t)

• q(k, i, j, t) ∈ [0 , 1]; q(k, i, j, t) represents the transition probability that

there are j flights in the queue at the end of period t; given that there are

i flights in the queue at the end of period t − 1, and the planned arrival

rate (PAAR) in period t is k.

• ve(k, i, t) ≥ 0; ve(k, i, t) represents the expected number of unutilized slots

in period t, given the planned arrival rate (PAAR) in period t is k, and

there are i flights in queue at the end of period t − 1.
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The objective function for this version of linear formulation can be written

as:

Minimize
T+1∑
t=1

MaxPaar∑
k=MinPaar

MaxQ[t]∑
j=0

j Y (k, j, t)

Constraint ( 3.1) remains. However, constraints ( 3.2), ( 3.3), ( 3.4), and

( 3.5) are no longer valid upon introduction of the new set of variables. The new

constraints, therefore, are formulated in the following way:

MaxPaar∑
k=MinPaar

Y (k, 0, 1) = 1 (3.6)

MaxQ[t−1]∑
i=0

Y (k, i, t) ≤ Xpaar(k, t)

∀ t ∈ 1, . . . , T + 1 ∀ k ∈ MinPaar, . . . , MaxPaar (3.7)

Xpaar(MinPaar, T + 1) = 1 (3.8)

MaxPaar∑
k
′
=MinPaar

Y (k
′
, j, t + 1) −

MaxQ[t−1]∑
i=0

q(k, i, j, t) Y (k, i, t) ≥ Xpaar(k, t) − 1

∀ j ∈ 0, . . . , MaxQ[t] ∀ t ∈ 1, . . . , T ∀ k ∈ MinPaar, . . . , MaxPaar (3.9)

MaxPaar∑
k′=MinPaar

Y (k
′
, j, t + 1) −

MaxQ[t−1]∑
i=0

q(k, i, j, t) Y (k, i, t) ≤ 1 − Xpaar(k, t)

∀ j ∈ 0, . . . , MaxQ[t] ∀ t ∈ 1, . . . , T ∀ k ∈ MinPaar, . . . ,MaxPaar

(3.10)
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T∑
t=1

MaxPaar∑
k=MinPaar

MaxQ[t−1]∑
i=0

ve(k, i, t) Y (k, i, t) ≤ ε (3.11)

The various constraints stated in this version of linear formulation are ex-

plained as follows:

• Constraint ( 3.6) replaces ( 3.2) of non-linear model. At the beginning of

a GDP, the queue size is zero and the PAAR in the first hour could be

any value. Note that constraint ( 3.3) of the non-linear model is actually

redundant and hence, not included in the linear model.

• In formulating constraint ( 3.7), we coupled the Xpaar(k, t) variable with

the Y (k, i, t) variable. If Xpaar(k, t) = 1, then summation of Y (k, i, t) over

all possible queues would be equal to 1 as Y (k, i, t) is dependent on k;

else, if Xpaar(k, t) = 0, the summation of Y (k, i, t) over all possible queues

would be equal to 0. Thus, the constraint is valid.

• Constraint ( 3.8) is formulated to ensure the validity of constraints ( 3.9)

and ( 3.10).

• Constraints ( 3.9) and ( 3.10) are a pair of coupling constraints that are

generated after decomposing constraint ( 3.4). However, the Markovian

feature of the model is still intact. If Xpaar(k, t) = 1, then the right

term of the inequalities ( 3.9) and ( 3.10) reduce to 0 - implying that

the probability that there is queue j at the end of period t is equal to

summation of all probabilities that there are queues of sizes 0 to MaxQ[t-

1] at the end of period t − 1. If Xpaar(k, t) = 0, then ( 3.9) and ( 3.10)
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become redundant as Y (k, i, t) equals 0, and we get
∑

k
′ Y (k

′
, j, t + 1) ≤ 1

and
∑

k′ Y (k
′
, j, t + 1) ≥ −1, which is always true.

We would now show how to compute the transition probability q(k, i, j, t).

Using the same logic as we did in non-linear case, we could arrive at the

following formulation for q(k, i, j, t).

If j=0, then

q(k, i, j, t) = Pr{(Narr[t] ≤ j − i + AAR[t])|(Xpaar(k, t) = 1)}

else if, 1 ≤ j < MaxQ[t]

q(k, i, j, t) = Pr{(Narr[t] = j − i + AAR[t])|(Xpaar(k, t) = 1)}

else,

q(k, i, j, t) = Pr{(Narr[t] ≥ j − i + AAR[t])|(Xpaar(k, t) = 1)}

To compute the probability that Narr[t] flights arrive in time period t, given

that Xpaar(k, t) = 1, we need to make some assumptions. All flights are

treated as homogenous commodities and all flight arrivals are assumed to

be binomially distributed. The regular flights whose arrivals are planned

for, during the GDP, follow a binomial distribution with the probability

of arrival (1 − Pcnx), where Pcnx is the probability of cancellation for each

flight. Pop-up flights are assumed to follow a different binomial distribution

with arrival probability of (1−Ppopcnx), where Ppopcnx is the probability of

cancellation for each pop-up flight. Since, pop-up flights are independent

of PAAR, we assume a maximum number of pop-ups during any period to

be equal to “Np” flights per hour. The transition probability can now be

56



computed as follows.

If j=0, then

q(k, i, j, t) =

Ub∑
y=0

Np∑
x=0

(
k

y − x

)
(1−Pcnx)

y−xP (k−y+x)
cnx

(
Np

x

)
(1−Ppopcnx)

xP (Np−x)
popcnx

∀ i ∈ 0, . . . , MaxQ[t − 1] ,∀ j ∈ 0, . . . , MaxQ[t],

∀ k ∈ MinPaar, . . . ,MaxPaar, ∀ t ∈ 1, . . . , T

where,

k is the PAAR in time period t,

y is the number of flight arrivals in time period t,

x is the number of pop-up flight arrivals in period t, and

Ub is the upper bound for y and equals to ‘j +AAR[t]− i′ and we assume

Ub ≥ Np.

Similarly, when 1 ≤ j < MaxQ[t], then

q(k, i, j, t) =

Np∑
x=0

(
k

y − x

)
(1−Pcnx)

y−xP (k−y+x)
cnx

(
Np

x

)
(1−Ppopcnx)

xP (Np−x)
popcnx

∀ i ∈ 0, . . . , MaxQ[t − 1] ,∀ j ∈ 0, . . . , MaxQ[t],

∀ k ∈ MinPaar, . . . ,MaxPaar, ∀ t ∈ 1, . . . , T

where,

y represents the number of arrivals and equals to ‘j + AAR[t]− i′ and

we assume y ≥ Np

y − x represents the number of arrivals of regular (planned) flights during

period t
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x represents the number of arrivals of pop-up (unexpected) flights dur-

ing period t

Finally, for j > MaxQ[t],

q(k, i, j, t) =
UB∑

y=LB

Np∑
x=0

(
k

y − x

)
(1−Pcnx)

y−xP (k−y+x)
cnx

(
Np

x

)
(1−Ppopcnx)

xP (Np−x)
popcnx

∀ i ∈ 0, . . . , MaxQ[t − 1] ,∀ j ∈ 0, . . . , MaxQ[t],

∀ k ∈ MinPaar, . . . ,MaxPaar, ∀ t ∈ 1, . . . , T

where,

LB represents the lower bound of y and equals ‘j + AAR[t] − i′, and

UB represents an upper bound of y, which we fixed at a value equal to

‘j + k − AAR[t] + 2N ′
p

Thus, q(k, j, i, t) can be computed and used in the model.

• Constraint ( 3.11) was formulated by modifying constraint ( 3.5) of non-

linear model. ve(k, j, t) can be calculated in the same way as in case of

non-linear version. This is shown below:

ve(k, i, t) =

AAR[t]−i∑
s=0

(AAR[t] − i − s) Pr{(Narr[t] = s)|(Xpaar(k, t) = 1))}

∀ i ∈ 0, . . . , MaxQ[t−1] ,∀ k ∈ MinPaar, . . . , MaxPaar, ∀ t ∈ 1, . . . , T

where, the arrival probabilities can be computed as

Pr{(Narr[t] = s)|(Xpaar(k, t) = 1))}

=

Np∑
x=0

(
k

y − x

)
(1 − Pcnx)

y−xP (k−y+x)
cnx

(
Np

x

)
(1 − Ppopcnx)

xP (Np−x)
popcnx

where,
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y represents the number of arrivals and equals to ‘j + AAR[t] − i′

y − x represents the number of arrivals of regular (planned) flights during

period t

x represents the number of arrivals of pop-up (unexpected) flights dur-

ing period t

The size of this formulation is polynomial in the problem data. We found that

for larger problems, the constraint set becomes unmanageable. Consequently, we

constructed another version which has a lower number of constraints.

Linear Formulation: Version 2

The computational burden in the linear-formulation of version 1 is mainly at-

tributable to constraints ( 3.9) and ( 3.10). So, we remodified constraints ( 3.9)

and ( 3.10) as follows:

• The variables Xpaar(k, t) are de-coupled from the coupling constraints ( 3.9)

and ( 3.10) and the new formulation is shown below:

MaxPaar∑
k′=MinPaar

Y (k
′
, j, t + 1) =

MaxPaar∑
k=MinPaar

MaxQ[t−1]∑
i=0

q(k, i, j, t) Y (k, i, t)

∀j ∈ 0, . . . , MaxQ[t] ∀ t ∈ 1, . . . , T (3.12)

The structure of this set of constraints essentially takes the same form as

the set of constraints ( 3.4) in the non-linear formulation. That is to say

the probability that there are j flights in queue at the end of period t (the

left term in ( 3.12) ) is equal to the product of transition probability, and
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the probability that there are i flights at the end of period t− 1 (the right

term in ( 3.12) ).

So, version 2 formulation consists of constraints (3.1), ( 3.6), ( 3.7), ( 3.8), ( 3.12),

and ( 3.11) with the same objective function as in version 1 of linear formulation.

The number of constraints in both the versions of the linear formulation is

computed below by assuming MaxQ[t] = MaxQ ∀ t ∈ 1, . . . , T .

Version 1 = (T + 3) + (T )(MinPaar − MaxPaar + 1)(1 + 2(MaxQ + 1)

Version 2 = (T + 3) + (T )(MinPaar − MaxPaar + 1) + (T )(MaxQ + 1)

The reduction in the number of constraints in version 2 when compared to version

1 would evaluate to

(MaxQ + 1)(T )(2(MaxPaar − MinPaar) + 1)

To give an idea of the amount of computation saved, assume that MaxQ=15,

MaxPaar = 40, MinPaar = 20, and T = 8. The total number of constraints

in version 1 and version 2 are 5555 and 307 respectively. Hence, the reduction

in the number of constraints in version 2 when compared to version 1 comes to

5248, which is approximately 94% reduction in this particular case. With respect

to computational time, version 2 could take few hours to solve while version 1

could solve in minutes. This is further discussed in chapter 4 of this thesis.
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3.2 The Simulation Model

The main purpose of the simulation model is to validate the SMIO model. The

other purpose of this model is to measure true sensitivities of various uncertain

elements on the overall delays and utilization. Recall that we could not incorpo-

rate drift in the SMIO model. The simulation model makes up for the deficiency

in the SMIO model by incorporating all uncertain demand elements including

drift.

In this section and the next one, we describe the model as well as the data

analysis underlying it.

3.2.1 Model Assumptions

We make the following assumptions for modeling a GDP:

• we assume the airport to have only a single runway and model the airport

system as a single server queuing system. In reality, there could be many

runways at the destination airport facilitating multiple flight arrivals at the

same time. However, to simplify our model, we assume a single runway

at the GDP airport. This assumption implies that at any given time, the

server (airport) has only one customer (flight) that is engaged in service.

Until that flight completes its service and departs, the next flight in queue

has to wait.

• The airborne queue starts only at the runway of the destination airport.

This simplifies the queuing model but in no way affect the trade-offs among

various performance measures. In practice, flights are usually put in some

sort of sequence much ahead of the local GDP airport owing to the enroute
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airspace restrictions like miles-in-trail and sector loads.

• Both, the number of time periods T, and the start time of the GDP are

known. Our model uses Monte-Carlo simulation technique, which requires

all the input data at the start of the GDP.

• The airport acceptance rate (AAR) is deterministic and assumes only one

value per period. The period can be quarterly or hourly. As said in our

problem statement, we are modeling deterministic AAR scenario for a

GDP. The AARs usually take a single value for a time period as they

are governed by runway configuration, runway capacity and wind factors.

Sometimes, due to some sudden weather changes or temporary runway

incursions, AARs may take two or more values for a time period.

• The GDP flights are homogenous (of same sizes). In practice, the utiliza-

tion of an airport is not precisely defined; as the airport capacity depends

on a variety of factors, such as aircraft arrival mix and the sequence of

arrivals. For example, a sequence of flights with a large flight followed

by a small flight may deliver different utilization when compared with a

sequence of flights with a large flight followed by a large flight and a small

flight followed by a small flight, though the total number of flight arrivals

in both the cases may be the same. One of the reasons is that a small

flight that follows a large aircraft has to maintain a good separation in air,

to cope with the turbulent wake left behind by the large flight. Hence, by

making an assumption that all flights are of same sizes, we can measure

utilization as the ratio of actual arrivals / airport arrival capacity for each

hour (or for entire GDP duration), without loss of generality.
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3.2.2 Model Description

To plan a GDP, GDP specialists should have information of the GDP airport ar-

rival capacity, AAR, and the GDP airport demand. Given these two parameters,

specialists set a planned arrival acceptance rate (PAAR) such that the overall

delays are minimized, and the airport capacity is properly utilized. Therefore,

the three main performance measures for a GDP are ground delay, airborne delay

and utilization. Ground delay is controllable while airborne delay and utilization

are dependent on the stochastic nature of the flight arrivals. For a GDP to be

effective, the right balance among all the three measures is required.

The whole GDP process can be viewed as assigning revised times of depar-

tures (namely Control Time of Departures CTDs), and assigning landing slots

to all the GDP flights by specifying the Control Time of Arrivals (CTAs). This

is shown in the figure 3.1

Origin
Airports

Airborne Queue

PAAR

AAR (available slots)

GDP
airport

Figure 3.1: Slot Representation of GDP Process

The following information characterizes the simulation model for a GDP:

63



• Start Time S, and the number of Time Periods T , each of width Wt

• Planned Sequence of Flight Arrivals f0, . . . ,fn

• Planned Inter-Arrival Times a1, . . . , aT

• Service Times µ1, . . . , µT

• Performance Measures

The planned sequence of flights f0, . . . ,fn, scheduled to arrive at the GDP airport,

is assumed to be known apriori; and, n is a sufficiently large number to warrant a

GDP. This sequence must be known to assign ground delays to the flights before

the start of a GDP. Once the GDP starts, the actual sequence of flight arrivals

may differ from planned sequence due to stochastic demand elements such as

drift, cancellations and pop-ups.

The planned inter-arrival time at between any two flights that are planned

to arrive in time period t is given by:

at = Wt/Paart

where, Wt is the width of the time period t, and Paart is the PAAR for the time

period t. Technically speaking, PAAR is a rate i.e., it has units of flights per unit

time; however, for modeling purposes, it has units of flights. Typically, PAARs

are set on a hourly basis during GDPs, and hence, the time periods are mostly

hourly blocks. Similarly, the service time for all flights arriving in the same time

period t is assumed to be the same. Hence, service time in time period t is given

by:

µt = Wt/AARt
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where, AARt is the AAR for time period t and Wt is the width of the time period

t.

The first performance measure, ground holding ghi assigned to any GDP

flight fi, is given by:

ghi = CTDi − OGTDi

where, CTDi is the Controlled Time of Departure, and OGTDi is the Original

Gate Time of Departure at the origin airport. In the simulation model, we

represent ground holding ghi as :

ghi = S + ia − OGTDi

where, S represents the start time of the GDP, i represents the slot assigned to

the flight fi, and a represents the planned inter-arrival time between any two

flights.

Similarly, the second performance measure, expected airborne holding ahi

for any flight fi, is given by:

ahi = ARTAi − CTAi

where, ARTAi is the Actual Runway Time of Arrival, and CTAi is the Controlled

Time of Arrival at the origin airport. In the simulation model, airborne holding

for any flight is viewed as the time spent by the flight waiting in the queue to

be served. This is shown mathematically below:

ahi = Actual Service Timei − Actual Arrival Timei

where, Actual Service Timei is the time at which the service for the flight fi

begins. This measure would be zero if there were no uncertainties in the arrival
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process. However, uncertainties do exist, and lead to variability in the actual

arrival times. We represent the actual arrival time of flight fi as

Actual Arrival Timei = S + ia + ∆i

where, ∆i is the deviation suffered by the flight fi from its planned arrival time.

These deviations in flight arrival times are caused by three elements - Flight

Cancellations, Pop-up Flights, and Drift. Each of these elements is modeled in

the following way:

Cancellations In our model, each flight will be canceled with a probability pcnx.

If cancellation were the sole source of uncertainty, the inter-arrival

times would follow a geometric distribution with a mean pcnx/(1−
pcnx) and variance pcnx/(1 − pcnx)

2. Based on our analysis of real

data, we estimated that cancellations were indeed following a ge-

ometric distribution with pcnx = 0.05.

Pop-ups We modeled pop-ups as a Poisson process, meaning, their inter-

arrival times are exponentially distributed with mean λ. Based on

our analysis of data from SFO airport, we determined an estimate

of λ.

Drift We computed empirical distributions for drift based on GDP data

analysis. More specifically, flight fi which incurs drift will arrive

at the airport at time

ti = S + ia + Di

where, Di is the net drift encountered by the flight (See subsec-

tion 2.1.3 of chapter 2 for full explanation of drift).
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Finally, the third performance measure, expected utilization u, for a GDP air-

port, is given by:

u = (Actual Number of Flight Arrivals)/(Available Airport Capacity)

where, the numerator is the summation of flight arrivals for all periods of the

GDP, and the denominator is the summation of AARs for all the periods of the

GDP. Upon converting the numerator and the denominator into time units, the

utilization measure looks like:

u = (Total Server Busy Time)/(Total Server Available Time)

The simulation model for GDP is implemented in C language. The discrete

events that trigger a change in the system state - Arrival of Planned Flights, Ar-

rival of Pop-up Flights, and Departure of Flights - are implemented as different

event functions outside the ‘main’ of the C program. The random numbers gen-

erated by the main program, and its functions, is based on Marse and Roberts’

Fortran random-number generator UNIRAN [15]. The implementation logic

and structure of the C program is shown in Figure 3.2.

67



1. Invoke the
initialization function

Iterate steps 2 &3

2. Invoke the timing

    routine

3. Invoke the event

    routine i

Start

1. Set simulation clock = 0

2. Initialize system state

    and statistical counters

3. Generate arrival events

    for all planned flights

4. Generate arrival events

    for all pop-up flights

5. Add all the events to the

    event list

1. Update system state

2. Update statistical

    counters

3. Determine the next

    occurence of event i

1. Determine the

    next event type,

    say i

2. Advance the

    simulation clock

Generate random variates

Is
simulation over?

1. Compute the estimates of interest
2. Write report

Stop

No

Yes

Initialization function Main
Program

Timing Routine

Event Routine i

Marse and Roberts' function,
and Library functions

Report Generator

Figure 3.2: Flow Chart for GDP Simulation Model
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3.3 Description of Data : Sources and Prepa-

ration

3.3.1 Sources (ADL files and Metron Database)

The principal sources of data used here are ADL files and the Metron database

- both archived by Metron, Inc. The data collected from these sources provided

required ground delay program variables including:

• Airport Acceptance Rates (AAR)

• Planned Airport Arrival Rates (PAAR)

• Flight related information (actual and controlled arrival and departure

times, cancellation info, etc)

The process of generating ADL files was explained in section 2.1.1. An

ADL file contains all data relevant to running a ground delay program [13]. A

particular ADL contains data for only one airport. For our analysis, we made

use of ADL files of SFO for the years 1999, 2000 and 2002. The Metron Database

refines the ADL data files by extracting only validated data to be archived.

For the purposes of statistical analysis, GDP days had to be carefully selected.

The following criteria were used to pick an appropriate set of days

• The GDP should run to completion and must be of at least 4 hours time

duration. GDPs canceled before completion don’t reflect the dynamics of

ideal GDPs. A GDP should last for at least four hours in order that there

are strong interactions among various GDP elements.
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• No ground stops prior to the start of GDP. Ground stops would affect the

hourly arrival rates causing low influx of flights in some hours and heavy

influx in other hours.

• Only Morning GDPs at SFO were considered. Since traffic flows would

be different at different times of the day, this approach gives a uniform

demand profile.

To extract data from the text-based ADL files, scripts in GAWK language

- a Unix utility tool - were developed. Metron Database files are stored in MS

Excel format and hence, were directly available for our work.

3.3.2 Fitting Probability Distributions

The probability distributions for flight cancellations, arrival of pop-up flights,

and the occurrence of flight drift during GDP, was generated from the available

data for use as input parameters in the simulation model.

For generating a cancellation probability distribution, we used ADL files of

SFO for the year 1999. We hypothesized that cancellations during GDP follow a

geometric distribution with a mean (1−pcnx)/(pcnx) and variance (1−pcnx)/pcnx
2,

where pcnx is the probability of cancellation of a flight. The maximum likelihood

estimator (MLE) is given by MLE = 1/(X̄ + 1), where X̄ is the mean of the

sample population. We conducted Lexis ratio to test our hypothesis. The theo-

retical and experimental values are shown in Table 3.1.
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Table 3.1: Hypothesis Testing for Cancellations Distribution

Tests Observed Values Theoretical Values

Lexis Ratio τ 21.90 19.40

In the above table, Lexis Ratio τ = S2/(X̄), where X̄ is the mean and S2 is the

variance of the sample population. Clearly, τ ≥ 1 indicates that the distribu-

tion is geometric in nature (if τ < 1, it is binomial distribution, and if τ = 1,

it is poisson distribution [15]). Further, the observed values closely match the

theoretical values of the Lexis Ratio test. Hence, we accept the hypothesis that

cancellations follow a geometric distribution. The probability distribution for

flight cancellations during GDP is shown in Figure 3.3
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Figure 3.3: Probability Distribution for Flight Cancellations During GDP
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The frequency distribution of pop-up flights is shown in figure 2.5. However,

pop-ups were highly variable on a hourly basis and hence, the probability dis-

tribution of pop-ups by each hour of a GDP is assumed to be exponential with

mean pop-up rate λ of about 3 to 5 flights per hour [11].

Empirical distributions for ground drift and enroute drift were generated

as the tests indicated that they do not follow any theoretical distributions. The

ADL data files for SFO for the year 2002 were used in analyzing the distributions

for drift. Figures 3.4 and 3.5 represent the empirical distributions for the flight

drift. It can be seen that, the distribution for ground drift is slightly skewed to

Distribution of Ground Drifts
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Figure 3.4: Relative Frequency Distribution for Ground Drifts During GDP.

the right meaning that, on an average, flights were departing later than their
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controlled departure times. It can also be seen that flights are departing as early

as 60 minutes prior to the controlled departure times, and as late as 90 minutes

after the controlled departure times.

Distribution of Enroute Drifts
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Figure 3.5: Relative Frequency Distribution for Enroute Drifts During GDP

From figure 3.5 it seems that flights take less enroute time than expected

as the distribution has a mean of -2.5 minutes. The standard deviation of 10.45

minutes also shows that the enroute drift is not as highly variable as ground

drifts, and that they mostly concentrate around the time window [-10,10]. Thus,

the effect of ground drift is relatively more profound than that of enroute drift.
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Chapter 4

Results

4.1 SMIO Model

The required inputs for the SMIO model are the predicted airport capacities

(AARs) for each hour of a GDP, the expected number of unutilized slots (ε)

in the GDP, the probabilities of flight cancellations (Pcnx) and pop-up arrivals

(Ppop), the maximum allowable airborne queue size in any period (MaxQ) for

each hour, and finally the duration of the GDP (T ). The outputs from the

model are the expected airborne holding (ABH) size and the optimal PAARs for

each hour of a GDP that optimize the airborne holding size for the given GDP

scenario.

In the next two sub-sections we present and analyze results of SMIO model

applied to some of the most common GDP scenarios at San Francisco (SFO)

Airport.
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4.1.1 Optimal PAAR Structures

Airport Capacity Distributions (ACDs) at SFO airport based on different seasons

of a year were derived by Inniss [14]. Table 4.1 shows three most common ACDs

prevalent at SFO.

Table 4.1: GDP ACDs for SFO Airport

Hours of Reduced Capacity ACD

1 30 45 45 45 45 45

2 30 30 45 45 45 45

6 30 30 30 30 30 30

Our model (version 2 of linearized SMIO model) is tested for the above three

scenarios using a Sun Microsystems machine, with SunOS 5.7 version, virtual

memory of 1.1GB, and RAM of 128MB. The results are shown in Table 4.2,

Table 4.3, and Table 4.4. For testing purposes, the common inputs for all the

scenarios are: Pcnx = 0.05, mean pop-up rate (Npop ∗Ppop = 20 ∗ 0.05) = 1 flight

per hour, maximum allowable queue size in all periods(MaxQ) = 12, MinPaar

= 20, MaxPaar = 40, and duration of the GDP (T) = 6 hours.
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Table 4.2: Output for 6-Hour Reduced ACD at SFO

Epsilon (ε) ABH Size (flights) Optimal PAARs

1 16.3319 34 29 30 31 31 31

2 11.3828 34 28 30 31 30 30

3 8.5886 34 27 30 30 30 31

4 6.4084 30 32 28 32 28 30

5 4.9728 30 31 28 30 32 28

Table 4.3: Output for 1-Hour Reduced ACD at SFO

Epsilon (ε) ABH Size (flights) Optimal PAARs

1 13.6153 31 47 44 45 45 45

2 8.3301 31 44 46 45 44 45

3 5.6774 30 44 46 44 45 45

4 3.5437 30 44 45 44 45 44

5 2.6379 29 44 45 44 45 44
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Table 4.4: Output for 2-Hour Reduced ACD at SFO

Epsilon (ε) ABH Size (flights) Optimal PAARs

1 13.7760 33 28 45 46 44 46

2 8.7957 31 28 46 44 46 46

3 5.6684 31 28 45 44 45 46

4 3.5309 29 30 44 45 44 45

5 2.6914 30 28 44 44 45 45

The above results consistently show that optimal PAARs follow a “staggered

pattern” in almost all of the scenarios tested so far. Specially, at higher airport

utilization levels, this staggered pattern is more prominent. This clearly shows

that the current policy of GDP planners to set “Flat” or “Uniform” PAAR rates

may not be effective to mitigate the effects of demand uncertainties (see Figures

4.1 and 4.2).
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Figure 4.1: Optimal PAARs Generated by SMIO model
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Figure 4.2: Typical PAARs Used by GDP Planners

Typically, the GDP planners assume deterministic demand and set PAARs

that are the same as the AARs. However, sometimes, they plan for stochastic

elements and set higher PAARs for the first few periods of the GDP to cope

with flight cancellations and pop-ups. This buffer, known as Managed Arrival

Reservoir (MAR), helps in putting a constant pressure on the airport resources,

thus effectively utilizing the airport, but at an expense of higher airborne holding.

Our results, intuitively, show that setting a series of small MARs at periodic

intervals during the GDP is better than setting very high MARs at the begin-

ning of GDP. This is the same working principle of inventory-stock models -

when inventory falls below the re-order level, then an order for stock is placed.

Similarly, when an airport exhausts a MAR, then a new MAR can be ordered.

Thus, the best way to mitigate the effects of demand uncertainties is to send

flights in periodic bursts at certain intervals.

78



The results discussed so far are generated by Version 2 of the SMIO model.

Version 1 produces almost the same results as Version 2, but with small differ-

ences, which are most likely due to inaccuracies in floating point computations.

However, it is important to note that the computational burden on version 1

is remarkably higher when compared with that of version 2. To illustrate the

computational aspect of the two versions, we tested a 6-hour reduced ACD at

SFO airport, with input parameters same as those used for the above tests. The

objective function values and the solution times for both the versions is shown

in Table 4.5:

Table 4.5: Comparison of Results from Version 1 and Version 2 of SMIO model

Version 1 Version 2

ε ABH Size Solution Time ABH Size Solution Time

(flights) (sec) (flights) (sec)

1 16.3319 7946.95 16.3319 367.11

2 11.3828 3590.4 11.3828 452.31

3 8.3304 2507.07 8.5886 323.13

4 5.43 1485.38 6.4084 298.04

5 4.6184 1562.51 4.9728 215.13

Table 4.5 clearly shows an enormous difference in computational complexity

between the two versions. At higher utilizations and for longer GDP programs

(say, 8 hours duration), the difference in solution times could be much more.

Since, GDP planners need a quick and practical model to work with for effectively

planning GDPs, version 2 is more useful than version 1.
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4.1.2 Sensitivity Effects of Uncertainties

The effects of flight cancellations and pop-up flights are analyzed in this section.

All of our analysis is based on 6-hour reduced ACD, namely, AAR = 30 for each

of the GDP hours.

Effects of Flight Cancellations

The effect of varying the probability of flight cancellations (Pcnx) on the ex-

pected airborne holding (ABH) size, at constant utilization, is studied. The

other parameters that are constant for this analysis are: mean pop-up rate

(Npop ∗ Ppop = 3 ∗ 0.3) = 0.9 flight per hour, Maximum allowable queue size

for all periods (MaxQ) = 12, MinPaar = 20, MaxPaar = 40, and Duration of

the GDP (T) = 6 hours. Tables 4.6, 4.7, 4.8 and 4.9 show all the results.

Table 4.6: Effect of Flight Cancellations, at Constant ε = 1

Pcnx ABH Size Optimal PAARs Solution Time

(flights) (sec)

0.025 10.0458 31 30 30 30 29 30 150.74

0.05 14.0887 32 31 31 31 30 31 222.5

0.075 18.7267 34 32 32 31 31 31 643.9

0.10 21.6711 36 31 33 33 33 32 985.6

0.125 23.8625 36 34 33 34 34 34 2529.11

0.150 27.1095 37 36 34 36 33 36 3812.05

0.175 28.937 39 36 36 36 36 35 1261.66

0.200 30.9402 40 37 38 37 37 38 375.65

80



Table 4.7: Effect of Flight Cancellations, at Constant ε = 2

Pcnx ABH Size Optimal PAARs Solution Time

(flights) (sec)

0.025 5.763 30 30 30 29 30 29 35.82

0.050 8.3686 32 30 30 30 31 31 63.12

0.075 11.663 32 31 32 32 31 32 319.38

0.100 13.964 33 33 33 31 33 33 205.41

0.125 16.1413 35 34 32 33 34 34 674.26

0.150 18.6471 36 36 32 35 34 36 1328.85

0.175 20.0918 38 35 35 35 36 37 1774.98

0.200 21.9061 39 37 37 36 36 37 1348.55

Table 4.8: Effect of Flight Cancellations, at Constant ε = 3

Pcnx ABH Size Optimal PAARs Solution Time

(flights) (sec)

0.025 3.467 30 29 29 30 29 30 12.49

0.050 5.3549 31 30 30 30 31 30 30.93

0.075 8.7341 32 31 32 32 29 31 151.41

0.100 10.0799 33 33 31 33 31 32 173.58

0.125 11.9837 34 34 32 32 34 34 481.57

0.150 13.9674 36 33 36 32 34 35 909.68

0.175 14.8708 37 35 35 35 35 35 1069.97

0.200 16.7439 38 36 37 36 35 38 1077.3
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Table 4.9: Effect of Flight Cancellations, at Constant ε = 4

Pcnx ABH Size Optimal PAARs Solution Time

(flights) (sec)

0.025 2.4963 30 29 29 29 29 30 10.37

0.050 3.6113 30 30 30 30 30 31 10.46

0.075 6.6717 32 31 29 31 32 32 91.43

0.100 7.3258 33 31 31 33 31 33 58.66

0.125 8.9477 34 32 32 34 32 34 278.66

0.150 10.8737 36 32 34 35 32 35 704.05

0.175 11.5283 36 35 35 34 35 35 443.36

0.200 12.9412 37 37 35 36 36 36 942.05

The graph shown in Figure 4.3 is based on the results documented in Tables

4.6, 4.7, 4.8 and 4.9.

From Figure 4.3, it can be observed that, at constant airport utilization and

at constant pop-up traffic levels, as uncertainty in flight cancellations increase,

the expected airborne queue sizes increase. For lower airport utilization levels,

there appears to be a linear correlation between probability of flight cancellations

and expected airborne queue size; however, at higher utilization levels, the trend

seems to be slightly non-linear. As flight cancellations increase, the variability

in flight arrival process also increases; thus, to guarantee that an airport is

utilized to the desired level, GDP planners have to set higher PAARs to counter

the danger of under-utilization at the expense of airborne holding. Figure 4.4

shows expected airborne queue sizes as a function of airport utilization - airborne

queue size decreases as utilization decreases, given that the level of uncertainty
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in flight cancellations is constant.

Effects of Pop-up Flight Arrivals

The effect of varying the mean pop-up arrival rate per hour “MPR” (Ppop ∗Npop)

on the expected airborne holding (ABH) size, at constant utilization, is studied.

The other parameters that are constant for this analysis are: Pcnx = 0.05, MaxQ

= 12, MinPaar = 20, MaxPaar = 40, and Duration of the GDP (T) = 6 hours.

Tables 4.10, 4.11, 4.12 and 4.13 show all the results.

Table 4.10: Effect of Pop-up Flight Arrivals, at Constant ε = 1

MPR ABH Size Optimal PAARs Solution Time

(flights) (sec)

1 16.3319 34 29 30 31 31 31 323.65

2 19.8651 32 29 32 27 30 31 761.14

3 21.081 30 30 28 29 29 29 966.53

4 23.1092 30 28 28 27 28 28 1302.57

5 25.715 29 28 25 28 26 27 1688.95

6 26.9839 27 27 26 25 27 26 1546.5

7 28.369 29 23 25 24 25 25 1889.04

8 28.1956 27 23 24 23 24 24 411.36
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Table 4.11: Effect of Pop-up Flight Arrivals, at Constant ε = 2

MPR ABH Size Optimal PAARs Solution Time

(flights) (sec)

1 11.3828 34 28 30 31 30 30 475.93

2 14.1223 32 27 32 28 29 30 449.52

3 14.7193 30 29 27 30 27 29 566.91

4 15.5648 29 27 28 27 28 27 451.65

5 18.0854 28 26 28 25 27 26 812.02

6 18.4903 27 25 26 25 25 27 670.01

7 19.9188 25 25 25 24 25 25 232.85

8 20.6673 27 21 24 23 23 24 317.2

Table 4.12: Effect of Pop-up Flight Arrivals, at Constant ε = 3

MPR ABH Size Optimal PAARs Solution Time

(flights) (sec)

1 8.5886 34 27 30 30 30 31 359.07

2 11.1667 32 27 28 32 28 29 246.58

3 11.1331 30 27 27 29 29 29 229.87

4 11.5746 28 27 27 27 28 28 235.55

5 13.9839 28 25 28 24 27 26 344.05

6 14.0155 27 25 24 25 26 25 523.03

7 15.0396 25 25 23 25 24 24 76.15

8 14.9237 24 23 23 23 24 23 107.12
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Table 4.13: Effect of Pop-up Flight Arrivals, at Constant ε = 4

MPR ABH Size Optimal PAARs Solution Time

(flights) (sec)

1 6.4084 30 32 28 32 28 30 257.42

2 8.2663 32 28 28 28 30 28 84.62

3 8.7412 30 27 27 29 27 29 344.93

4 8.6639 28 26 27 27 27 28 117.42

5 11.1591 28 25 25 28 24 26 304.11

6 11.0204 27 24 25 24 25 25 203.63

7 11.959 25 23 25 23 25 23 81.96

8 11.6084 24 22 23 23 23 23 103.61

Effect of Pop-up Flights on Airborne Holding

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9

Mean Pop-up Rate per hour

E
xp

ec
te

d
 N

u
m

b
er

 o
f 

F
lig

h
ts

 in
 

A
ir

b
o

rn
e 

H
o

ld
in

g

epsilon = 1

epsilon = 2

epsilon = 3

epsilon = 4

Exp. Number of 
Unutilzed Slots 

(epsilon)

Constant 
Pcnx = 0.05

Figure 4.5: Marginal Effects of Pop-up Flight Arrivals on Expected Airborne

Queue Sizes

86



Expected Airborne Holding Vs. Airport Utilization
at varying pop-up rates

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

Epsilon (Expected Number of Unutilized Slots)

E
xp

ec
te

d
 N

u
m

b
er

 o
f 

F
lig

h
ts

 in
 

A
ir

b
o

rn
e 

H
o

ld
in

g
MPR = 1

MPR = 2

MPR = 3

MPR = 4

Mean Pop-up Rate (MPR) 
per hour

Constant 
Pcnx = 0.05

Figure 4.6: Expected Airborne Queue Sizes Versus Airport Utilization at Varying

Pop-up Arrival Rates per Hour

Figure 4.5 illustrates that, at constant airport utilization and at constant

uncertainty of flight cancellations, as uncertainty in arrival of pop-up flights in-

creases, the expected airborne queue size increases. There appears to be a linear

correlation between mean pop-up arrival rates and expected airborne queue size.

Pop-up flights add up to the GDP arrival demand; thus, causing excess airborne

holding. Figure 4.6 strengthens the earlier observation that expected airborne

queue size increases as a function of airport utilization.
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4.2 Simulation Model

The Simulation Model incorporates all three forms of demand uncertainties,

namely, flight cancellations, arrival of pop-up flights and flight drift. The per-

formance measures are airborne delay, ground delay and airport utilization.

4.2.1 Pareto Optimal PAARs

We have seen that the SMIO model generates some peculiar PAAR patterns

that oppose the current policy of setting flat PAARs. To validate that the

optimal PAARs indeed follow these “Staircase” kind of patterns, we employed

our simulation model to derive the Pareto Frontier of PAARs that optimize

airport utilization and airborne delay.

Definition 1 (Pareto Optimality) A state A (a set of object parameters) is

said to be Pareto optimal, if there is no other state B dominating A with respect

to a set of objective functions. A state A dominates a state B , if A is better

than B in at least one objective function and not worse with respect to all other

objective functions.

Definition 2 (Object Parameters) The input parameters that minimize or

maximize the objective function are called Object Parameters.

In our case, the object parameters are the input parameters of the simulation

model, namely, PAARs, airport arrival capacity, distributions for flight cancella-

tions, pop-up arrivals and flight drift. The objective functions are ‘airborne delay

(minimize)’, ‘ground delay (minimize)’, and ‘airport utilization (maximize)’ func-

tions. Since the SMIO model generates optimal PAARs based on two explicit
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criteria - airborne delay and airport utilization, the pareto frontier of PAARs will

also be constructed with only two objective measures by factoring out ground

delay so that the comparison of results is valid.

The pareto optimal PAARs are generated for the following GDP scenario.

To model a realistic scenario, we chose average values for the parameters that

are involved.

• Airport Capacity = 30 per hour, and GDP duration = 6 hours.

• PAARs are varied from 28 to 34 for each hour of a GDP

• Cancellations follow a geometric distribution with probability Pcnx = 0.052.

• Arrival times of Pop-ups is exponential with mean rate = 3 per hour.

• Flight Drift follows an empirical distribution (derived in Section 3.3.2).

The simulation model was run for 10 replications and a 95% confidence in-

terval was considered for the output data. The final pareto curve is shown in

Figure 4.7. From this figure, two important conclusions can be made:

• Optimal Paars indeed follow a staggered pattern. At lower utilizations,

the staggered pattern may not be very noticeable, but at high utilizations

(≥ 0.88), the rise and fall of PAARs is very visible. This is the same

observation we noted from the results of the SMIO model. In addition, it

seems that the first hour of the GDP should be more heavily loaded. Hence,

we believe that the most effective PAARs should indeed follow staircase

patterns that have high first hour loads.

• Airport Utilization and Airborne Holding share a non-linear positive corre-

lation, given that the level of demand uncertainty remains constant. Again,
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we noted the same observation earlier from our results of the SMIO model.

A significant observation is that, to achieve very high utilization (close to

1.0), the airborne holding incurred by the flights can become very large.

For example, for an increase in utilization from 0.97 (PAAR scenario 12)

to 0.98 (PAAR scenario 13), the increase in airborne holding is 4 minutes

per flight.

90



Pareto Optimal PAARs based on Airborne Holding
and Airport Utilization Criteria

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 5 10 15
Airborne Holding per Flight (in min)

A
ir

p
o

rt
 U

ti
liz

at
io

n

1   - (29,30,30,30,30,30)          2   - (32,30,30,30,30,30)
3   - (33,30,30,30,30,28)          4   - (33,30,30,30,30,29)
5   - (32,30,30,30,28,28)          6   - (33,30,28,30,30,29)
7   - (33,30,28,30,28,30)          8   - (33,30,28,30,28,29)
9   - (34,30,28,28,28,30)         10 - (34,30,28,29,28,29)
11 - (34,30,32,30,29,28)         12 - (34,28,28,32,28,32)
13 - (34,34,28,28,32,32)

1

2

3
4

5
6

7

8
9

10
11

12
13

PAAR Structures

Figure 4.7: Pareto Optimal PAARs Based on Airport Utilization and Airborne

Delay Criteria

91



To understand how “Flat” PAARs deviate from the “Staircase” or “Pareto

Optimal” PAARs with respect to performance, we constructed a scatter plot of

some of the Flat PAAR scenarios which is shown in Figure 4.8.
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Figure 4.8: Performance comparison : Flat PAARs Vs. Pareto PAARs

From the figure, it can be observed that pareto optimal PAARs definitely

show improvement in performance when compared with flat PAARs, as all flat

PAARs lie below the pareto curve. At higher utilization, there is significant

difference in the performances delivered by staircase PAARs and Flat PAARs.

92



4.2.2 Sensitivity Effects of Uncertainties

In this section, we study the effect of varying certain input parameters. The

simulation model was replicated 100 times and a 95% confidence interval was

considered for all the results shown in this section.

PAARs

Figure 4.9 and Figure 4.10 show the effect of varying PAARs on the output

parameters, namely, airport utilization and delays (ground and airborne). The

GDP scenario has constant arrival capacity of 30 per hour, and it lasts for 6

hours. Other input parameters are same as in the above section. Clearly, from

Figures 4.9 and 4.10, it is visible that setting high PAARs would deliver a high

airport utilization, though at the expense of airborne delays. The GDP planners

must carefully weigh the trade-offs between ground delays and airborne delays

when setting PAARs for a GDP.

Flight Cancellations

At this point of analysis, it would be interesting to quantify the effects of various

uncertainties, including flight cancellations, in terms of dollars. With this idea

in mind, a cost function is formulated as shown below:

Operating Cost = Airport Under-utilization Cost + Airborne delay Cost

i.e.,

Cf = Cu ∗ Xu + Cabh ∗ Xabh

where,

Cu is the cost of one open (wasted) slot during a GDP,
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Cabh is the cost incurred by an airline due to airborne holding per minute,

Xu is the total number of open slots during a GDP, and

Xabh is the total airborne holding (abh) in minutes ( abh per flight * total

flights) during a GDP.

We need to justify why under-utilization cost is incurred by airlines. The

reasoning is this. Arrival slots, during a GDP, are wasted mostly due to oc-

currence of cancellations, drifts and others; however, cancellations are the most

dominant of all with respect to costs and frequency of occurrence. Hence, it

would be equivalent to say that, during a GDP, one last-minute flight cancella-

tion can lead to one wasted slot (this is mostly true in case of Timed-Out (TO)

cancellations, as each TO cancellation potentially wastes an airline’s slot (see

Section 2.1.1)). Thus, airport under-utilization cost is an approximation of the

cancellation costs incurred by airlines.

One more important thing to note about the cost function is that it excludes

ground holding costs. We can argue that in a GDP scenario, where an airport

constantly operates at a specific PAAR, the ground delay is always constant.

What we mean by this is that, suppose that we pick a pareto optimal PAAR,

say , scenario 12 in Figure 4.7, then if we vary flight cancellations or pop-up mean

rates of arrivals, the only parameters that are affected are airport utilization and

airborne delay of flights. Hence, ground delay costs need not be a criterion in

our cost function.

Since the simulation model does not output the number of slots that are

being wasted during a GDP, we use the following transformation to determine,
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approximately, the total number of vacant slots during a GDP:

Xcnx = (1 − ρ) ∗ Nhours ∗ σ

where,

ρ is the airport utilization during a GDP,

Nhours is the number of hours for which a GDP lasted, and

σ is the number of available slots per hour during a GDP

Xabh is the total airborne holding (abh) in minutes ( abh per flight * total

flights) during a GDP.

A reasonable estimate of cost incurred by an airline per cancelled flight (Ccnx)

is given by $20, 000 [1]. The airborne delay cost per minute (Cabh) is estimated

to be $47.64 [2].

To study the sensitivity effects of flight cancellations on the overall operating

costs of the airlines, we selected scenario 12 with PAAR vector (34,28,28,32,28,32)

from the pareto curve (see Figure 4.7). Assuming that an airport is operating

at the chosen PAAR scenario, we measure the costs incurred by airlines as a

function of flight cancellations during a GDP. Table 4.14 gives the sensitivity

results and Figure 4.11 shows the plot of probability of flight cancellation Pcnx

vs. operating cost of airlines per GDP.

It is clear from Figure 4.11 that at a constant PAAR setting, if uncertainty

in flight cancellations increases, then the airport utilization could drastically

decrease, thereby creating vacant slots and also, high airborne holding per flight.

Thus, the costs incurred by the airlines increase proportionally with an increase

in probability of flight cancellation.
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Table 4.14: Effect of Flight Cancellations on Operating Costs of Airlines

Pcnx ρ Xu Xabh Costs

0.025 0.97 5.4 1966.504 $201,684

0.050 0.96 7.2 1584.824 $219,501

0.075 0.95 9 1241.688 $239,154

0.1 0.92 14.4 1085.69 $339,722

0.125 0.91 16.2 912.296 $367,462

0.15 0.88 21.6 767.725 $468,574

0.175 0.87 23.4 545.528 $493,989

0.2 0.84 28.8 461.04 $597,964
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Pop-up Flight Arrivals

We use the same PAAR scenario as used in the above section. The Mean Pop-

up Rate (MPR) per hour is varied at constant drift and constant probability of

cancellation, and the costs are recorded as shown in Table 4.15. Figure 4.12

shows the graph of MPR versus costs.

Table 4.15: Effect of Pop-up Flight Arrivals on Operating Costs of Airlines

MPR ρ Xu Xabh costs

3 0.97 5.4 1457.53 $177,437

4 0.97 5.4 2003.06 $203,426

5 0.98 3.6 2600.43 $195,885

6 0.98 3.6 3051.60 $217,378

7 0.98 3.6 3522.61 $239,817

8 0.98 3.6 3979.53 $261,585

Pop-up flights also seem to have the same kind of impact on the costs as the

flight cancellations. However, the effect of pop-ups is quite linear as opposed

to slight non-linear correlation of flight cancellations on the overall airline costs.

Pop-ups displace the actual flights in the arrival sequence; hence, the utilization

may not suffer much, but the airborne holding incurred by the regular flights

increases significantly.

Flight Drift

To study the sensitivity effects of drift, we make certain assumptions. Firstly,

we factor out the enroute drift as it is insignificant with respect to ground drift;

hence, we vary only the ground drift to study sensitivity of drift. Secondly, we
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need some way to control the drift variable to study its sensitivity. Recall that we

derived an empirical distribution of drift in Section 3.3.2; all our results generated

so far made use of the same distribution. The disadvantage of using an empirical

distribution is that it cannot be controlled by its mean and standard deviation,

but controlled by empirical probabilities (histogram relative frequencies). Hence,

to vary the distribution, we use the following approach shown in Figure 4.13.

Current Distribution with
Drift WIndow [-90, 90] min

New Distribution with
Drift WIndow [-100, 100] min

Figure 4.13: Generation of New Distribution From a Given Empirical Distribu-

tion For Drift

Figure 4.13 illustrates how we stretch an empirical distribution (with drift

window [-τ , τ ]) to generate a new distribution (with drift window [-(τ + δ),

(τ + δ)]). We slice off an equal percentage from all the histograms within the

original distribution, and add new histograms of width δ each. Now, we assign

percentage of drift to the newly created histograms in such a way that the mean

of the whole distribution remains the same. The assumption here is that the drift

within the window [-(τ + δ), τ ] and [τ , (τ + δ)] follows a uniform distribution.

One more assumption here is that the cumulative percentage of flights with drift
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in the window [-(τ + δ), τ ] and [τ , (τ + δ)] will be 10% of all the flights that drift

during a GDP, which means that the probability of any flight drifting into this

window is 0.1.

Using the above assumptions, we performed sensitivity analysis of drift.

Three different distributions are being generated from the original distribution

(with mean 4.95 minutes and standard deviation 21.32 minutes). The results

are shown in Table 4.16. The plot of cost vs. drift window is shown in Figure

Figure 4.14.

Table 4.16: Effect of Flight Drift on Operating Costs of Airlines

Drift Window Std. Deviation ρ Xu Xabh costs

[-120,120] 38.7 0.95 9 1480.9 $250,550

[-110,110] 37.2 0.95 9 1385.1 $245,987

[-100,100] 35.9 0.95 9 1272.4 $240,617

[-90,90] 21.32 0.96 7.2 1680.5 $224,057

Clearly, the results indicate that drift can result in considerable operating

losses for the airlines. Each flight that drifts alters the planned arrival sequence,

creating unnecessary airborne holding and wastage of slots. Controlling the

variance in flight arrivals will help reduce the operating costs of the airlines.

In Figure 4.14, by decreasing the drift by 10 minutes per flight on an average

(from 35.9 to 21.32 minutes), the airlines can save approximately $16,000 per

GDP. Hence, small drift windows will curtail the amount of uncertainty in flight

arrivals and produce a smooth and predictable arrival sequence, that can be

effectively controlled.

From the sensitivity analysis of flight cancellations, pop-up flights and drift,
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$220,000

$230,000

$240,000

$250,000

$260,000

Drift  [Standard Deviation]  (in min)

O
p

er
at

in
g

 C
o

st
s 

p
er

 G
D

P

PAAR Scenario :- [ 34 28 28 32 28 32]       Pcnx = 0.052
Mean Pop-up Rate = 3 per hour                  Mean Drift = 4.95 min

[ 21.32][35.9][ 37.2][38.7]

Figure 4.14: Effect of Drift on Airline Operating Costs.

it can be concluded that all of them affect the airline economics in a significant

way. Thus, minimizing the uncertainty in demand would help reduce the airline

costs by a fair margin.
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Chapter 5

Conclusions

5.1 Main Contributions

The main purpose of our thesis is to model and analyze demand uncertainty in

the context of Ground Delay Programs (GDPs). To this extent, we have de-

veloped two models - the Stochastic Mixed-Integer Optimization (SMIO) Model

and the Simulation Model. The SMIO model produced surprising results as

they indicated that the Planned Airport Arrival Rates (PAARs) that optimize

the performance of a GDP exhibit non-conventional patterns, that are proba-

bly unknown to GDP planners until today. We believe that this is our biggest

contribution. The results from the Simulation Model also reinforced the PAAR

structures exhibited by the SMIO model. Hence, we suggest the GDP planners

to rethink their policy of setting PAARs during a GDP - “Staircase” PAARs for

“Flat” PAARs.

For a specific GDP scenario, we applied our simulation model and developed

a pareto optimal curve with airborne holding and airport utilization as perfor-

mance measures. This pareto curve could be employed by the GDP planners as
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it provides them with insight into the structure of optimal PAARs that achieve

equilibrium between airborne holding and airport utilization, under the given

GDP conditions. Similar such pareto curves for a variety of GDP scenarios can

expedite the decision-making process involved in planning a GDP.

Both models can serve as good strategic tools to be used by airlines in op-

timizing their objectives. Specially, the simulation model provides estimates as

well as sensitivity of demand uncertainty cost during GDPs. The SMIO model is

special in its own way because it accommodates most of the current procedures

and paradigms of air traffic management developed by Collaborative Decision

Making (CDM) working group. The output from this model is the number of

flights that should be ordered to arrive at the destination (affected) airport so

that the airborne holding is minimum at desired airport utilization. Once the ag-

gregate number of flights that needs to be sent to the GDP airport is determined,

the CDM procedures like Ration-By-Schedule (RBS) and Compression are then

applied to determine the individual flights that should be assigned ground delay.

Thus, this model has a potential to evolve as a CDM decision-support tool for

the common use of all CDM members.

5.2 Directions for Future Research

Both of the models that we developed in this thesis produced significant results.

However, these models can be further enhanced to meet more realistic GDP

situations. Specifically, the SMIO model can be extended by incorporating flight

drift and by devising a better formulation to lighten the computational burden.

The GDP process is becoming more and more dynamic due to the rapid
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development of tools and technologies from within the CDM group. For example,

GDP revisions and the use of Ration-By-Schedule (RBS++) and Compression

algorithms make GDPs inherently a dynamic process. A dynamic programming

model may be more suitable for approximating a GDP than a static or a static

stochastic model. Hence, a possible extension of our models can be in this area.

Finally, it would be considered a major breakthrough if an optimization

model were to be constructed that incorporates both stochastic demands and

stochastic capacities in a GDP context.
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